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Summary of Significant Findings 

Importance of Fatigue 
• Advanced manufacturing has resulted in significant changes on the shop-floor, 

influencing work demands and the working environment while the corresponding safety-
related effects, including fatigue, have not been captured on an industry-wide scale.  

• Our survey toward the U.S. manufacturing workers found that 57.9% of respondents 
indicated that they were somewhat fatigued during the past week. 

• Ankles/feet, lower back and eyes were reported to be frequently affected body parts and a 
lack of sleep, work stress and shift schedule were top selected root causes for fatigue. 

• To respond to fatigue when it is present, respondents reported coping by drinking 
caffeinated drinks, stretching/doing exercises and talking with coworkers. 

• Our results from the survey may inform the design of fatigue monitoring and mitigation 
strategies and future research related to fatigue development. 

Use of Sensors for Monitoring Fatigue 
• No need for full set of sensors for accurate physical fatigue monitoring in manufacturing 

tasks. 
• Fusing the data from multiple wearable sensors can highly improve the accuracy of 

movement information estimation for fatigue monitoring. 
• The on-body sensor layout for fatigue monitoring can be optimized by sensor fusion 

techniques. 
• Use of heart rate sensor to detect, identify and diagnose physical fatigue for tasks similar 

to supply insertion. 
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• Use of torso sensor to detect, identify and diagnose physical fatigue for the manual 
material handling task. 

• Fatigue induced through a simulated MMH task resulted in changes in both the temporal 
and spatial characteristics of gait kinematics, which is detectable with a single sensor. 

• Analytical models are able to detect physical fatigue in multiple occupationally relevant 
settings. 

• This research makes an encouragement to invest in data-driven assessment in the 
manufacturing sector to prevent occupational injury. 

• Prolonged fatigue monitoring is possible using body movement parameters from 
wearables with the prediction of the fatigue start point and for an individualized 
intervention. 

 

Fatigue Interventions 
• While it has been well-documented that the prevalence of physical fatigue is high in 

many industries and it has adverse health outcomes, there is limited research on the 
prescription of interventions. 

• Our systematic review presented a total of 23 controlled trials examining 14 physical 
fatigue interventions. 

• Using the PEDro scale to evaluate the methodological quality of the studies, 15 studies 
were deemed of high quality (and the remaining eight were of low quality). 

• Only three interventions (posture variation, chemical supplements and rest-breaks) had 
strong evidence of efficacy; the remaining 11 had limited to minimal evidence. 

• More high-quality randomized controlled trials are needed to examine the effectiveness 
of the aforementioned 11 interventions in mitigating/reducing physical fatigue. 

Recommendations for the Implementation of Wearables in the Workplace 
• It is critical to choose the right wearable – both sensor type and wear location – for the 

industry and problem of interest. 
• Provide employees with detailed information on how the data will and will not be used. 
• Do not use the wearable sensors for productivity monitoring; limit their application to 

safety and wellness. 
• Work through unions and employee organizations to gain buy-in. 
• Provide employees with the option to not share their data or to opt-out of a monitoring 

program. 
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• Conduct data collection and monitoring for limited durations and to answer a well-
defined question (e.g., at the implementation of a new task or production line) – 
continuous monitoring is not needed and leaves more room for data misuse. 

• Integrate data collection with existing wellness programs where possible to support a 
Total Worker Health approach – prevents competing efforts for similar data. 

• Train users on proper wear and maintenance of the sensors. 
• Assess user perceptions pre- and post-introduction of the sensors. 

 

Detailed Description of Project Work and Outcomes  

Summary of Methods Employed 
The incidence of workplace incidents and injuries can be significantly reduced with the accurate 
and timely identification of fatigue by quantifying a worker’s level of physical and physiological 
exposure. With advances in technology, sensor systems have begun to be applied in the 
workplace. Current uses have focused on posture analysis, task classification, fall detection and 
computerized application of traditional observational tools (e.g., automated checklists).  
 
However, these systems have had limited utility for exposure assessment and safety surveillance. 
Improved systems and the analysis approaches for interpreting the data are, thus, needed to 
accurately quantify an individual’s level of exposure to determine fatigue and subsequent risk. 
The long-term goal of this work was to enable the individualized quantification of fatigue and 
subsequent risk in a manufacturing environment for intervention prescription. The specific 
objective of this project was to develop a sensor system that quantifies the physical and 
physiological impact of work, to develop models of fatigue estimation, and to determine 
appropriate interventions. To achieve this objective, the specific aims were carried out as 
described below.  

Specific Aim 1: Identify the Appropriate Combination of Sensors and On-Body Locations for 
Optimal, Real-Time Fatigue Monitoring 
 
Survey of Manufacturing Workers on the Prevalence of Fatigue 
To survey the prevalence of fatigue, its drivers and individual coping mechanisms among U.S. 
manufacturing workers, we constructed an online survey. Workers currently employed in 
manufacturing industries and aged 19 or older were invited to participate. They were recruited 
through two main channels: a) e-mails sent to over 25 manufacturing company contacts, where 
we asked them to share the link to our survey to their employees; and b) survey invitation emails 
that were sent through the membership list of several American Society of Safety Engineers 
(ASSE; now known as American Society of Safety Professionals or ASSP) listservs. In total, we 
distributed 38 emails to safety professionals asking their assistance to share our survey with their 
manufacturing employees. 
 
This survey was designed as a cross-sectional study. To address the research questions, the survey 
collected data on: a) respondent demographics; b) fatigue-related individual characteristics; c) 



ASSP Foundation Final Report on Fatigue Research Project  •  December 2018  | 5 

work-related exposures; d) worker-perceived fatigue causes; e) perceived fatigue level, frequency 
and interference; f) body parts affected; and g) individual fatigue coping mechanisms. The survey 
was completed by 451 individuals (i.e., a completion rate of 55.9%). 
 
Survey of Safety Professionals for the Use of Wearables 
A custom, electronic survey was developed using the Qualtrics (Provo, UT, USA) survey engine. 
Questions regarding basic demographic information including age and gender of the respondent, 
current occupation and industry sector, years worked in current occupation as well as total years 
in any OSH-related position, highest degree, and current OSH certifications comprised the first 
part of the survey. Respondents were then asked a series of questions about the types of wearable 
devices they use at work and away from work. Questions included listing any personal fitness 
technologies that they owned [make(s) and model(s)], if they wear any of those technologies at 
work, and describing what they use their personal fitness technologies for at work (if they 
reported wearing them at work). Respondents were also asked to estimate what percentage of 
employees at their workplace use wearable sensors at work (although, not necessarily for work 
purposes). 
 
Finally, respondents were asked a series of questions regarding their perceptions of using 
wearable devices while at work. Questions included asking if they would be in favor of using 
wearable technologies at their workplace to track OSH risk factors and ranking the types of risk 
factors respondents were most interested in capturing at work with a wearable device (among six 
typical ergonomic risk factors potentially capable of being assessed with wearable technologies). 
Respondents were also asked if they would be interested in using a “dashboard” display to track 
group or departmental exposures to physical risk factors as well as to describe the single biggest 
concern with using wearable sensors at their workplace. The survey concluded with a free 
response section for respondents to list any additional comments they had regarding wearable 
devices and/or the survey. 
 
An electronic invitation to the survey was emailed to 28,428 registered members of ASSP and 
1,302 professionals certified by the Board of Certification in Professional Ergonomics (BCPE). Of 
the 28,428 email invitations sent to registered ASSP members, 7,867 (27.7%) of the emails were 
opened and 996 responses were recorded (12.7% of opened emails, 3.5% of emails sent). Of the 
1,316 emails sent to BCPE members, 155 responses were recorded (11.8% of emails sent). It is 
unknown how many emails distributed to BCPE members were opened. Of the 1,151 survey 
responses, 952 responses were considered sufficiently complete (i.e., valid) for subsequent 
analyses. The mean age of the respondents was 48.7 years (SD=12.2) and 70.4% were male. 
 
Experimental Study of the Use of Wearables for Fatigue Monitoring 
Twenty-eight participants, 10 females and 18 males, were recruited from the Buffalo, New York, 
community. Detailed demographic information is presented in Table 1. The study involved 
healthy adults who reported to have no cardiovascular diseases, metabolic conditions, or 
musculoskeletal disorders that would interfere with completion of the study procedures. The 
protocol was approved by the Institutional Review Board at the University at Buffalo, and all 
participants provided informed consent prior to participation.  
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Table 1. Participants demographics (mean ± SD) 
 Males Females 
N 18 10 
Age (years) 38.4 ± 18.5 28.4 ± 9.4 
Height (cm) 174.5 ± 7.8 165.9 ± 8.1 
Weight (kg) 79.4 ± 13.3 64.0 ± 12.6 
Body mass index (BMI; kg/m2) 26.0 ± 3.4 23.4 ± 5.7 

 
The study was designed as a cross-sectional laboratory study with a one-factor within-subjects 
design. The designed factor was the physical level of the task at three levels (low, medium, and 
high) based on postural, biomechanical, and physiological demand. The low-level task included 
an assembly task completed in a standing position at a workstation, the medium level task 
involved supply pickup and delivery with sustained back flexion at the delivery point, and the 
high-level task involved manual materials handling with order picking. These tasks represent the 
range of tasks performed regularly and repeatedly in complex manufacturing environments (Lu 
et al., 2017). Picture representing each task are shown in Figures 1 and 2. Each task level was 
performed in a separate session and the session involved three hours of continuous work. The 
three-hour period was selected to represent a typical period of continuous work in a 
manufacturing environment.  
 

  
Figure 1. Pictures of the assembly task (left) and the supply pickup and insertion task (right) 
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Figure 2. Pictures representing the manual materials handling task 
 
Each participant was instrumented with four inertial measurement units (IMUs) while 
performing the tasks. Each IMU was a Shimmer3 (Shimmer, Dublin, Ireland, 
www.shimmersensing.com), which is small-sized, low-power-using and equipped with wireless 
transmission capabilities. The sensor contains a low-noise analog accelerometer, a digital wide-
range accelerometer and magnetometer, and a digital gyroscope. The acceleration, angular 
velocity and magnetic field data were recorded at a sampling rate of 51.2 Hz throughout the 
tasks. Each sensor was oriented with the internal y-axis directed along the segment. The sensors 
were attached by an elastic strap. A heart rate monitor chest strap was also worn throughout the 
experiment (Polar CR800X, Polar). Figure 3 below shows the locations of the sensors on the 
body.  
 
Each three-hour task was divided into three one-hour periods representing a replicated task, with 
a one-minute rest period between to allow for subjective rating collection. At the start of the 
session, participants completed a sleep quality questionnaire, a risk-taking behavior task [Balloon 
Analogue Risk Task (BART)], and a psychomotor vigilance task (using PC-PVT). These 
measures were used as a baseline of sleepiness and behavior. 
 
In addition, the subject was asked to lay in a supine position to measure resting heart rate. After 
baseline measurements, the participant was provided with instructions on the relevant fatiguing 
task for the session. Participants were given target performance levels for each task. Participants 
provided their subjective rating of perceived exertion using the Borg 6-20 scale every 10 minutes. 
At the end of each hour, participants completed the NASA-TLX workload assessment. Then, 
after three-hours of task performance they did the BART and PC-PVT tasks as a post-
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assessment. Table 2 summarizes the average subjective ratings, sleep quality, PVT, and BART 
assessment results.  

 

 
Figure 3. Location of the sensors on the body 
 
Table 2. Average (SD) results at the end of three hours for each task 

Task Reported 
Sleep 

Quality 

PVT (ms) ΔPVT 
(ms) 

Final Borg 
RPE 

Fatigue 
Rating 

(max 10) 

NASA-
TLX 

Mental 
Demand 
(max 20) 

NASA-
TLX 

Physical 
Demand 
(max 20) 

Parts 
Assembly 4.8 (2.7) 279 (74) -5 (59) 12 (3.1) 5.3 (1.9) 8.8 (5.4) 7.3 (5.0) 

Materials 
Handling 5.0 (2.7) 257 (50) 16 (37) 14.2 (2.6) 6.8 (4.7) 7.0 (4.7) 11.4 (4.9) 

Supply 
Insertion 4.7 (2.6) 270 (51) 10 (43) 14.5 (3) 6.8 (1.5) 5.8 (4.6) 10.7 (5.4) 

 

Specific Aim 2: Model Fatigue Development to Distinguish Between a Worker’s Normal (In-Control) State 
and Fatigued (Out-Of-Control) State 
 
Using the data collected through the experiment described above, a large portion of the effort for 
the project was dedicated to modeling fatigue development to: detect the presence/absence of 
fatigue in a participant, and to evaluate whether it was feasible to identify when the individual 
became fatigued. One main challenge with wearable sensors is the large quantities of data that are 
now available and that require advanced statistical analysis approaches to make meaningful 
interpretation of worker behavior from the data. 
 
This aim focused on comparing different approaches for fatigue classification and monitoring. 
Four main approaches were implemented: 1) regression-based analysis to predict changes in 
subjective response of the participant as they completed the three tasks, 2) machine learning 
methods for detecting differences between the non-fatigued and fatigued states based on features 
defined from the sensor data, 3) template-based matching of the gait cycle for the walking 
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portions of the materials handling task, and 4) change point analysis for gait parameters 
extracted from each step taken over the three-hour task. For each approach, a consistent series of 
steps for analysis were performed: 1) data cleaning, where missing/erroneous data were detected, 
the data from all sensors was synchronized, and all data was sampled to an equivalent frequency; 
2) data filtering, to eliminate outliers in the captured sensor signals; and 3) feature extraction of 
potential predictors of fatigue from the multiple sensors.  
 
For the first method, several penalized regression models were applied to the data. Penalized 
logistic regression and penalized regression models were used for fatigue detection and 
development, respectively. For the second method, several single classifier and ensemble machine 
learning approaches were applied to the materials handling and supply insertion task data 
separately to determine the best model for fatigue diagnosis. 
 
The third and fourth methods focused on just the gait data from the materials handling task. Gait 
parameters, including stride length, stride height, duration, velocity, acceleration, and jerk were 
extracted for each step. For fatigue classification, a series of steps from the start and end of the 
task were used for analysis. For change point analysis, all steps were segmented from the filtered 
sensor data and used as input for analysis. The last phase of each method involved model 
evaluation and testing to showcase the utility of the approach.  

Specific Aim 3: Determine the Effect of Individual Worker Interventions by Measuring Work 
Exposures and Recovery Time to Return to In-Control State 
 
Systematic Review of Intervention Efficacy 
Several interventions have been designed to lower the injury risks and lost productivity 
associated with fatigue. However, as stated in the U.S.’s National Occupational Research Agenda 
(NORA): 
 

[The] adoption of these interventions by employers is slow. There is a need to conduct 
additional intervention research that demonstrates the effectiveness of workplace changes 
in improving musculoskeletal health across a variety of outcomes, and to understand the 
facilitators and barriers to adoption of existing interventions by employers. Research to 
speed the adoption of effective interventions has the potential to dramatically reduce the 
frequency and severity of MSDs in the workplace. (National Occupational Research 
Agenda for Musculoskeletal Health, 2018, p. 11) 

 
A first step towards addressing this NORA objective is to first survey and assess the existing 
literature for workplace interventions that target physical fatigue. There are no published reviews 
that examine the efficacy of physical fatigue interventions in workplace settings. The overarching 
objective of this aim is to bring into better focus the literature that focuses on designing, 
developing and/or implementing interventions that reduce fatigue development and/or improve 
fatigue recovery. Our approach utilized a standard systematic review of the workplace fatigue 
intervention literature, focusing on articles that utilized randomized controlled trials (RCT) or 
controlled clinical trials (CCT). The following three main research questions were examined in 
this review: 
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1) What are the characteristics of current workplace physical fatigue intervention studies? 
2) What is the methodological quality for each intervention study? 
3) What is the strength of evidence for each intervention? 

From the systematic review, we aimed to: a) present practitioners with some insight on the 
effectiveness of examined interventions in the literature; and b) highlight gaps that need to be 
further studied by researchers. 
 
Two popular databases (PubMed and Google Scholar) were used to identify relevant studies of 
workplace physical fatigue interventions. The first search was performed in July 2017, limited to 
articles written in English, and used terms to capture the overlap between three fields: a) 
interventions; b) health outcomes; and c) workplace. In July 2018, we conducted our second 
search, where we excluded all terms within the intervention field to expand our search results. 
Note that we also excluded several non-physical and/or non-workplace terms that occurred in 
the previous search including: “sleep,” “mental,” “cancer,” “driver,” “patient,” “alarm,” “children” 
and “compassion.” 
 
For this systematic review, five inclusion criteria were chosen: a) the intervention study was 
based on a RCT or CCT; b) the interventions were related to occupational settings (whether it is 
field-based or lab-based studies that mimic occupational tasks/work); c) the study attempted to 
address physical fatigue; d) the study was published in a journal (we excluded conference 
proceedings and book chapters since their peer review is often not detailed); and e) we excluded 
any papers that were not written in English. A breakdown of the search strategy and the included 
articles is provided in Figure 4.  

 
Figure 4. An overview of the sequential procedure for selecting relevant intervention papers 
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Summary of Research Findings 

Over Half of Respondents Would Be in Favor of Using Wearable Technologies to Track Safety Risk 
Factors  
However, overcoming the issue of employee privacy and confidentiality of the data would need 
to be addressed first. Other barriers for implementation included employee compliance, sensor 
durability, cost, accuracy of the data, and workplace safety standards around worn items. About 
half of the safety professionals own a wearable device, with most if them using the wearable for 
fitness tracking.  
 
Table 3. Responses on favorability of using wearables to track safety risk factors 

 
 

Table 4. Risk factor prioritization by industry 
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Figure 5. Response on the single greatest concern for the use of wearables at work 
 
As an example, these are some concerns expressed by respondents: 

• “I would not want employees to feel their jobs are threatened by not moving correctly or 
fast enough.” 

• “We are a very large employer (~5,000 employees at one location). The cost to deploy 
devices to such a large population would likely be very high compared to relatively low 
losses.” 

• “My employees do real life activities with real hazards . . . . I don't want people looking at 
a device screen while they are engaged in hazardous activities . . . .” 

 
These concerns are valid and need to be addressed before implementing a monitoring program 
in the workplace.  

Movement Patterns Change with Fatigue. These Changes can be Measured Using Wearables. 
Machine Learning Models can be Used to Better Identify and Diagnose Fatigue. 
For the regression and machine learning analysis, a balanced dataset for training was desirable, 
so only a portion of data from the start (non-fatigued) and end (fatigued) periods were included.  
As a first step for feature selection, time series plots of all features were constructed to evaluate 
which features were virtually unchanged from the non-fatigued to fatigued states. 
 
Based on the visualizations, 15 (of the 55 candidate) features were dropped. The second step 
(where wrapper or embedded methods are used) of feature selection is applied after the training 
and test samples are generated using the leave p-participants out cross validation approach. Then 
the last step of variable selection was deployed using two popular methods: best subset selection 
and LASSO. For our analysis, we used 200 bootstrap samples (each having n = 234).  
 
To develop the fatigue prediction models, several methods were applied during our preliminary 
analysis of the data. The models evaluated included: logistic regression, penalized logistic 
regression, decision trees (DT), naive Bayes (NB), k-Nearest Neighbors (kNN), support vector 
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machines (SVM), and three ensemble models (random forest (RF), bagging, and boosting). Due 
to their relatively poor performance, DT, NB and kNN were eliminated. In addition, models 
using best subset selection typically had better prediction performance with less features than 
their LASSO counterparts. 
 
Therefore, our case study focused on using the best subset selection with the following five 
analytical models: a) logistic regression; b) SVM; c) RF; d) RF with bagging (hereafter bagging); 
and e) RF with boosting (hereafter boosting). In addition, we compared these five models to the 
approach of [20] since it was the only paper that considered multiple tasks in the context of 
occupational fatigue (Table 2). 
 
To ensure that the comparison is fair, we considered two different variants of the penalized 
logistic regression approach with LASSO. The first is utilizing their approach and features (on 
our data), and the second involves using their methodology with our features and data. In our 
estimation, this allows us to better evaluate whether our proposed method is superior to theirs. 
The reader should note that they did not consider model interpretation in their feature 
generation and thus we expect that our features are easier to interpret by practitioners. 
 
In Table 5 (below), the predictive performance of our five models is compared with the two 
variants from our regression analysis. The table shows the mean (and standard deviation in 
parentheses) for each of our four metrics. In addition, the average number of features selected by 
each model is also presented. The reported results are based on 105 constructed test datasets 
from the two-participants-out cross-validation. For the first three numeric columns, a higher 
value is desired since it reflects a better prediction performance. The consistency column 
captures the average absolute difference between the sensitivity and specificity for each model, 
evaluated on the 105 test datasets. It is noted that the smaller the consistency is, the similar 
performance in detecting fatigued and no-fatigued states simultaneously would be. Moreover, a 
smaller number of features facilitates the interpretation of the model, which is important in the 
fatigue identification and diagnosis phases. 
 
Four main observations from the table need to be highlighted. 

1) As expected from the preliminary analysis, the number of features selected with the best 
subset selection are much less than those selected by the LASSO model. This means that 
the usability of the analytical models with the BSS model is much higher than that with 
LASSO since practitioners’ need to monitor and understand approximately five features 
(instead of 11 or 19). 

2) The the performance of all seven models is relatively high with an overall average 
accuracy greater than 0.77. 

3) The performance of the three ensembles is better than the remaining models. 
4) The penalized logistic regression of our prior work outperforms its variant with our 

features from a prediction perspective. However, this comes at the cost of adding eight 
features to the model (i.e., ~70% increase in the variables used). Based on these 
observations and this case study, one can conclude that our framework has shown higher 
detection performance (with less features) when compared to our regression approach.  
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The next logical research question is to examine how the prediction performance varies while 
limiting the number of sensors used. To evaluate this question, we utilize the bagging model 
since the results showed that it had the lowest consistency and had similar prediction 
performance to the two other ensembles. Table 6 reports the prediction results, when features are 
limited to those from one, two, three, four and all sensor combinations. Note that the values that 
are not shown in the table (e.g. Ankle, Hip, Wrist and HR sensors) reflect scenarios when a 
prediction was not possible. This means that the main features that detected the fatigue were 
eliminated with the added constraints on which possible features to select from. 
 
From the results in the table, one can see that the prediction performance does not vary 
significantly as the number of sensors are changed. For example, the average accuracy varies 
from 0.850 to 0.871 (with a standard deviation u 0.09) as the number of sensors vary. This is only 
true if the torso IMU is included in the analysis. Based on this observation, we recommend only 
using the torso IMU sensor for detecting fatigue in manual material handling environments (that 
are similar to those analyzed in our case study). While the prediction performance is almost the 
same, the costs incurred by the firm are much lower, and the usability of the system by using only 
one sensor is significantly improved. This is an important practical takeaway, which has not been 
reported in previous studies investigating fatigue in MMH tasks. 
 
Table 5. Mean performance and corresponding standard deviation of the classification 
models for fatigue detection for the materials handling task (recommended model is in bold) 
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Table 6. Mean performance and the corresponding standard deviation of the Bagging model 
for fatigue detection using different sensor combinations for the materials handling task 

 
 
A first step in understanding fatigue is to examine how frequently a feature is selected all of the 
105 two-participants-out cross validation bagging model test sets. We limited our analysis here to 
two cases: a) when all five sensors are utilized; and b) when only the torso sensor is used. The 
results for these analyses are shown in Figure 6, respectively. 
 
From both figures, one can see that all three categories of features (i.e. statistical, biomechanical, 
and individual features) are selected in our models. For the five-sensor case, one biomechanical 
feature (mean back rotational position) and five statistical features appeared in more than 65% of 
the models. All other remaining features appeared in less than 10% of the models. On the other 
hand, age becomes a much more predictive factor if we only rely on the torso sensor. In that case, 
back rotational position is still selected in 100% of the models. Once a list of predictive/important 
features is established, we then investigate how those features vary as the participant transition 
from the non-fatigued to fatigued states.  
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Figure 6. Important features visualization in the materials handling task using the Bagging 
model 
 
From the fatigue identification results, one can conclude that the type of fatigue is localized at the 
back. This conclusion is supported by: a) the prediction performance is almost unchanged (and 
high) when only the features from the torso sensor are used for prediction; and b) the mean back 
rotational position was selected as an important feature in 100% of the models. This was the only 
feature that was selected in 100% of the models. Our results are consistent with findings in the 
ergonomics literature, which suggest that manual material handling may lead to a higher 
prevalence of back injuries. 
 
Based on the case studies, this study makes three main contributions. First, we demonstrated the 
capability of using a unified modeling approach for managing physical fatigue in different 
occupational tasks/settings. The case studies show the ability to detect, identify, and diagnose 
fatigue in multiple occupationally-relevant settings. The ability to identify/diagnose fatigue 
through the use of wearable sensors has not been shown prior in the literature. Second, the 
insights from the fatigue identification phase of our framework can be used to inform sensor 
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placement and selection. We demonstrated that the prediction performance using one sensor is 
equivalent to that of using all sensors for our two case studies. Third, we showed that the 
importance of different types of features (statistical summaries of the sensors’ profiles, 
biomechanical features, and individual characteristics of workers) varies with different 
manufacturing tasks. Thus, researchers and practitioners should consider this finding when 
developing models for detecting/managing fatigue in other production settings.  
 
In our estimation, the proposed framework and the case study findings have significant 
implications for both production management practice and research. From a practical 
perspective, we have shown that changes in a worker’s physical performance can be detected and 
modeled using wearable sensors. Utilizing the principles behind the technology adoption model, 
we have shown that fatigue associated specialized jobs can be detected using one sensor (without 
a loss in prediction performance). The emphasis on fatigue identification and diagnosis through 
visual analytical approaches allows practitioners to identify the risks, which are to be tackled 
through an appropriate intervention strategy. In essence, our framework can provide near real-
time insights into the well-being of shop-floor workers and their associated productivity levels. 
This information can be incorporated into the safety and productivity components of the 
SQDCM (safety, quality, delivery, cost, and morale) lean production effectiveness dashboard. 
 
From a productions research perspective, our framework attempts to bridge the gaps between 
predictive and prescriptive analytics in the context of human performance modeling. The 
sequential nature of our framework attempts to overcome the “black box” nature of machine 
learning algorithms. We have shown that the sequential application of predictive models when 
combined with visual analytic tools can provide insights for prescriptive interventions.  
 
Furthermore, this study demonstrates that futuristic production environments can capture in 
real-time the well-being of their workers in addition to the data typically captured on the 
equipment. This can allow for more dynamic operational interventions (e.g., work-rest 
scheduling models). Our findings have significant implications for manufacturing occupations, 
as they are likely to encourage the management to invest in data-driven manufacturing to 
develop better plans to prevent fatal and non-fatal occupational injury. The fatigue detection 
phase of the proposed framework can be used for work scheduling practice as well, since the 
scheduling approaches should incorporate the fatigue status of the workers.  

Measured changes in walking allow for detection of fatigue along a continuous time series  
The mean trajectory of four different motion templates from the training sets is presented in 
Figure 7. The distinction between the fatigued and non-fatigued states is shown in the separate 
profiles with the shaded region representing the standard deviation. There is a distinct decrease 
in the step length after inducing fatigue. 
 
In addition, the mean profiles of velocity magnitude, acceleration magnitude and jerk magnitude 
show a decrease in step duration. The other comparable quantity is the peak value of these four 
mean trajectories. The graphical representation shows a decrease in the maximum step height 
and velocity magnitude after fatigue. The graphs also show that differences between the profile of 
mean trajectories for other kinematical variables (i.e. acceleration magnitude, and jerk 
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magnitude between fatigued and non-fatigued states are not as visually clear as the position and 
velocity magnitude trajectories. The combination of all templates for the classification algorithm 
was found to have the highest accuracy (90%) for correctly detection of the fatigued state as it 
was assumed. The acceleration template has the second highest accuracy (89%), which can be 
attributed to the accurate direct segmentation results and the fact that it was the directly 
collected, rather than calculated, measure since the kinematic computations can be a source of 
error and uncertainty. The next highest performing templates were position trajectory and 
velocity magnitude both with an accuracy of (86%). In addition, the templates containing angular 
properties show a meaningful change in the leg posture in the sagittal plane. 
 

 
Figure 7. Temporal and spatial characteristics of gait following fatigue 
 
For time series analysis, the data was first divided into sets and then analyzed using an 
agglomerative non-parametric approach for multiple changepoint analysis of multivariate data. 
The time series of the step duration, stride length, and stride height were included. The 
changepoints were identified and compared to the subjective ratings of fatigue (see Figure 8 for 
examples). Participants fell into two main clusters in which the trajectory-based features (i.e., 
stride length and stride height) acted in the same manner. The clusters differed in the pattern of 
stride duration relative to the trajectory-based features.  
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Figure 8. Example gait parameter profiles and identified changepoints for two participants 
 
The current literature on time series analysis and changepoint detection is very limited in the 
field of ergonomics and human activity monitoring, mainly focused on activity recognition and 
segmentation from movement measures through spatiotemporal alignment, or movement 
estimation by monitoring physiological measures, e.g. cardiovascular and respiratory time series. 
Calzavara, et al. (2018) recently developed an analytic model for rest allowance estimation to 
avoid fatigue accumulation in the operators of manual material handling activities using the 
pattern of fatigue and recovery functions. Heart rate as a measure of energy expenditure was used 
as an indicator of whole-body fatigue, however, no measure was considered for physical 
movement monitoring and their model requires a person-specific hyperparameter determination 
leading to model uncertainty and limited generalizability. 

Evidence Suggests That Postural Variation, Chemical Supplements and Rest Breaks are Effective 
Physical Fatigue Interventions 
The search terms for the literature review are shown in Table 7. The search terms initially 
resulted in a total of 2,398 unique studies. These studies represent the union set of studies 
identified from our first and second searches. Upon applying our inclusion and exclusion 
criteria, 23 studies have been identified as the most relevant studies to be included in this 
systematic review. Among the 23 studies, 14 interventions were identified, and each intervention 
was categorized as either individual- or workplace-focused based on whether the intervention 
has changed the main process of the work.  
 
Table 7. Search terms used to find literature related to fatigue interventions  

 
Several important findings should be highlighted. First, most of the intervention studies (17 out 
of 23) are published since 2010. Four of the six studies that were published prior to 2010 involved 
the use of mats/shoe-insoles (3 studies) and a back belt (1 study). From observing the 
chronological order of the studies, one can also observe the role of technologies in recent 
intervention studies. 
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For example, the three studies within posture variation are all published within the last five years 
since they require the ability to analyze postures through the use of motion capture systems or 
wearable sensors. The technologies and the ability to process their data in near real-time are 
somewhat recent events. 
 
The second observation combines information captured in the “Reference” and “Population and 
Sample Size” columns. Fifteen of the 23 studies were RCTs, and the remaining were CCTs. It 
should also be noted that 18 of the 23 studies included crossover designs and one study as 
potential crossover design (not specified in text). Among the 15 RCTs, 10 were crossover studies 
with random allocation of equipment order. Additionally, six out of the eight CCTs had balanced 
or systematically varied crossover designs for the experimental tasks or participants’ sex. 
 
The third observation pertains to the participants recruited in these studies. From the 23 studies, 
10 studies included subjects from both sexes, five studies included only male participants, two 
studies included only female participants, and the remaining two did not report the sex 
distribution. In addition to the sex, the average age distribution of the studies are as follows: 14 
studies had an average age of participants in the 20s, five studies had the average age of 
participants in the 30s, two studies in the 40s, one study in the 50s, and one did not specify the 
average. From these participants’ information, one could see that most of the studies used a 
convenience sample of college-aged students that do not typically correspond to the 
demographics seen in the workplace. This is a potentially limiting factor in the published 
literature. 
 
The fourth observation pertains to the targeted types of work. Prolonged standing work, repeated 
lifting or lowering (stooped labor and dynamic lifting belong to this category) and repetitive 
assembly (pick and place belong to this category) tasks were mentioned four times among the 
selected literature, respectively. Prolonged sitting has been investigated in three studies. Hand-
grip or endurance test and visual work were studied twice. Other individual studies covered 
overhead work, blowing pipe and outdoor tasks. Among these studies, three of them involve 
multiple work tasks. Corresponding to these work tasks, the locations of fatigue included the 
head (facial muscles and eyes), upper extremities (shoulders, arms), lumbar (erector spine, 
lumbar paraspinal muscles), lower extremities (feet, ankles) and overall fatigue. 
 
Fifth, the choice of outcome measures used by the experimenters was almost uniformly 
distributed. Eight studies used only objective measures, and eight studies elected to only use 
subjective measures. The remaining seven studies utilized both objective and subjective measures 
in their experiment. The most common utilized outcome measures included: electromyography 
(EMG), maximum voluntary strength (MVS), and subjective ratings of fatigue. 
 
The sixth, and final, observation relates to the location where the experiment is conducted. From 
our review, 14 studies were performed in a laboratory setting, and the remaining nine were 
performed in the field. Note that field studies tended to have larger sample sizes.  
 
Three interventions had strong evidence, two of which are individual-focused interventions 
(chemical supplements and posture variation). Second, no interventions in the literature were 
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found to have a moderate quality of evidence. The implication of the second observation is the 
remaining 11 interventions had either limited- to minimal-evidence. The ratings for these 11 
interventions is based on: a) individual studies were found to be of low quality using the PEDro 
score; and/or b) the intervention of interest has only been examined in one study.  
 
Two high-quality RCTs prevented overall/visual fatigue through the intake of chemical 
supplements. Suh, et al. (2012) showed that administration of high-dose intravenous vitamin C 
reduced fatigue significantly compared to placebo in office workers, especially with the subjects 
who have lower baseline levels of vitamin C. Ozawa, et al. (2015) found a dietary supplement 
containing bilberry extract improved several objective and subjective parameters of eye fatigue 
induced by video display terminal loads. Bilberry extract contains antioxidants and may have 
acted on eyes and eye muscles.  
 
Three RCTs with high methodological quality concluded that changing between standing and 
working postures during prolonged sitting or having a footrest at 10% of body height while 
prolonged standing show positive effects in reducing fatigue. The location of fatigue investigated 
in those studies included whole body and lumbar regions. As the modern workplace 
environment becomes increasingly dependent on computer use, office workers’ postural 
allocations are reliant on prolonged sitting or standing. Thorp, et al. (2014) conducted two 5-day 
x 8-hour/day experimental conditions in an equal, randomized order among overweight/obese 
office workers, who performed their usual occupational tasks either in a seated work posture or 
interchanging between a standing and seated work posture every 30 minutes using an electric, 
height-adjustable workstation. Through self-administered questionnaires, participants’ total 
fatigue score was significantly lower in the stand-sit condition. 
 
Son, et al. (2018) applied a footrest at 10% of body height condition during a two-hour prolonged 
standing task that caused the lowest muscle fatigue and placed the lowest load on the lumbar 
region, with the lowest pain development, comparing with 5% or 15%of body height. Compared 
with sitting in a standard office chair, Tanoue, et al. (2016) introduced a dynamic sitting balance 
chair. Healthy adults performed a 30-minute Kraepelin test under these two conditions, and 
lumbar fatigue was significantly lower in the seated postures that encourage pelvic movements. 
The “combination of postures” lowers the static load on postural muscles, compared to sustained 
sitting or standing postures. Physiologically, frequent alternating between postures reduces 
muscle fatigue via sustained activation of low threshold motor units while prolonged postures 
cause low-level static muscle loading (Hagg, 1991). In summary, posture variations show strong 
evidence in lowest muscle fatigue development for office work that has prolonged work postures. 
Diverse real-world settings are needed to confirm the generalizability of this intervention. 
 
Two RCTs with high methodological quality provide rest breaks to workers and showed 
consistent results. The location of fatigue investigated using this intervention included whole 
body and lumbar regions. For repetitive lifting and lowering, Faucett, et al. (2007) provided an 
additional five-minute rest break to every working hour in which there was no other scheduled 
break for workers in two trials of stoop labor tasks. In this condition, fatigue scores did not show 
significant changes in the strawberry harvest trial (ntotal = 66, predominately male participants), 
but were less severe in the budding and tying of young citrus trees (ntotal = 32, predominately 
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female participants). The study results suggest that alternative patterns of rest breaks, including 
brief rest breaks early in the work shift, may reduce workers’ fatigue over the course of the day. 
Similar interventions are likely to benefit workers in other strenuous jobs including construction 
and manufacturing. Mailey, et al. (2017) found that short, frequent breaks (stand/move for one 
to two minutes every half hour) significantly reduced fatigue interference compared to longer, 
planned breaks for inactive females with full-time sedentary occupations from sitting each 
workday for eight weeks.  

Project Extensions and Planned Future Work 
Approximately 3.9 million Americans are employed as hand laborers and material movers 
[Bureau of Labor Statistics (BLS), 2017a)], with ~1 million employed in warehouses and 
distribution centers (WDCs) (Wright, 2016). With the rapid increase in e-commerce, supporting 
hand laborer jobs are expected to increase by 7% over the next 10 years (BLS, 2017a). Across 
WDCs, the recordable injury rate is 5.0 per 100 FTE workers, compared to an average 2.9 for all 
industries (BLS, 2017b), placing a large burden on the employees and their employers. This 
incidence rate translates to 63,790 non-fatal injury cases requiring days away from work by 
laborers and freight, stock, and material movers, accounting for 6% of all cases (BLS, 2017b). 
Moreover, a recent study found the risk of suffering a musculoskeletal disorder (MSD) for an 
order picker to be 75% higher than the average employee (Schneider & Irastorza, 2010). Injuries 
to the arm/shoulder account for ~18% of all workers' compensation claim loss amounts across 
industries (highest percentage), often resulting from strains and overexertion (BLS, 2017b; 
EHSvToday, 2001; National Council on Compensation Insurance, 2014).  
 
While automation has increased productivity and output at WDCs, many tasks in warehouse 
facilities cannot be fully automated, and remain manual, due to variations in the size and shape 
of objects and packaging requirements (Kopytoff, 2012). Approximately half of workers in the 
warehousing and storage industry are hand laborers and hand pickers (Wright, 2016). These jobs 
are characterized by repetitive lifting and carrying over the course of shifts exceeding eight hours 
and/or lasting overnight. Workers in a person-to-parts fulfillment center may pick 200-250 
items/hour (Kopytoff, 2012) and walk ~6 miles/day (Fiveash, 2016). 
 
To minimize the inefficiency of walking to the parts (~ 50% of a picker’s time (R. De Koster, Le-
Duc, & Roodbergen, 2007)), WDCs are quickly transitioning to parts-to-person systems in which 
workers stand at a fixed workstation to pick from and place into bins located in front of them. 
The percentage of WDCs using such a system more than doubled over the past two years, 
increasing from 5% in 2015 to 12% in 2017 (Michel, 2017). These systems concentrate the 
physical load on the upper extremity, with high repetitions (picking ~500 items per hour (M. De 
Koster, 2012)) and fewer periods of built-in recovery while walking. 
 
Physically demanding work (characterized by forceful exertions, prolonged duration, 
repetitiveness, or their interactions) places high biomechanical and physiological stresses on the 
shoulder muscle and passive tissues, which can result in fatigue in the absence of adequate 
rest/recovery (Kumar, 2001). Physical fatigue can lead to decreased muscle capacity, which in 
turn results in a decline in work efficiency and an increased injury risk (Kumar, 2001; Rose, 
Neumann, Hägg & Kenttä, 2014; van Rijn, Huisstede, Koes & Burdorf, 2010; Visser & van Dieën, 
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2006). For example, those with shoulder disorders were 3x more likely to have had jobs involving 
repetitive shoulder movements (up to 36 movements/min) (Frost, et al., 2002). Thus, considering 
important fatigue parameters (e.g., length of time-on-task between breaks, work pace, task 
variability, and timing of rest breaks) through job design can reduce the subsequent risk of 
injuries. 
 
At the work organization level, fatigue is often addressed through work-rest scheduling or job 
rotation. Currently ergonomics practice lacks adequate physical fatigue assessment and work-
rest/job rotation scheduling tools, as existing models of fatigue and recovery are limited in their 
practical application (Rose, Beauchemin & Neumann, 2018; Rose, et al., 2014). Due to the 
limitations of the existing approaches and the physically demanding nature of WDC work, there 
is a need for greater understanding of fatigue accumulation and the recovery process during 
relevant tasks. The proposed project extension aims to address many of these limitations by 
evaluating fatigue accumulation during and recovery following a dynamic, order picking, upper 
extremity task. The information on fatigue accumulation and recovery processes will be 
incorporated into improved models that can support job design and work-rest scheduling, which 
can reduce the incidence of fatigue and ultimately minimize the likelihood of shoulder injuries. 
These models will be made freely available to practitioners via a tool (project output), translating 
research to practice (r2P) and enabling them to develop cost-effective controls for their workers.  

Translation of Findings 
Application of this work can facilitate the implementation of fatigue monitoring to allow for 
identification of indicators of behavior change prior to adverse effects. This will allow for 
intervention to support recovery from fatigue. In addition, the review of current fatigue 
interventions from the literature highlights the paucity of evidence-based interventions and the 
need for further research into the effect of controls on fatigue development and recovery It is 
important that those in both the research and practice communities are made aware of the new 
findings from this work. 
 
Thus, over the course of the project, research completed during this project has resulted in 
conference presentations, conference proceedings papers, and journal publications that 
contribute to the scientific knowledge base on the modeling of fatigue development using 
wearable sensors. Six journal papers have been published, two manuscripts are under review, and 
one manuscript is in preparation for submission this month. It is expected that these remaining 
three manuscripts will be published in 2019. To promote the project and build buy-in from 
industry, the PI and Co-I have also been interacting with industry representatives and other 
researchers on the relevance and application of the project. Going forward, the investigators will 
continue to engage with industry leaders for the implementation of the methods and 
recommendations.  
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