COVID-19: The Role of the Risk Management Process and Its Impact on Pandemics

Bruce Lyon, Vice President CSP, P.E., SMS, ARM, CHMM and Dr. Georgi Popov, CSP, QEP, ARM, SMS, CMC, FAIHA

Bruce Lyon, CSP, PE, SMS, ARM, CHMM

Vice President, Hays Companies

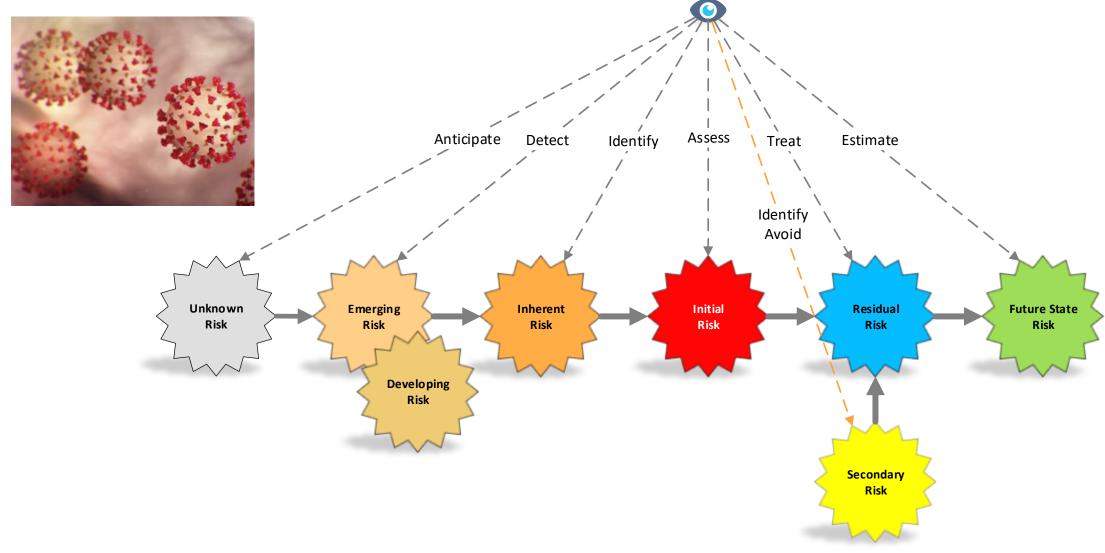
- 38 years of experience assisting clients in risk assessment, team-based problem solving, safety management systems, ergonomics and OSHA compliance
- Chair of TC262 US Technical Advisory Group to ISO 31000, member of ANSI Z590.3 Prevention through Design committee, Advisory Board Chair to the University of Central Missouri Safety Sciences program, and a director for the Board of Certified Safety Professionals
- Co-author of "Risk Management Tools for Safety Professionals" (ASSP), and "Risk Assessment: A Practical Guide for Assessing Operational Risk" (John Wiley & Sons)
- Authored numerous articles in Professional Safety, three of which received 1st place for Technical Writing Excellence by ASSP and is a frequent speaker at national and regional conferences. In 2018, he received the CSP Award of Excellence from BCSP.
- Professional member of ASSP, past president of the Heart of America Chapter, a member of the Risk Management practice, and Ergonomics practice

Georgi Popov, Phd, CSP, QEP, SMS, ARM, CMC, FAIHA

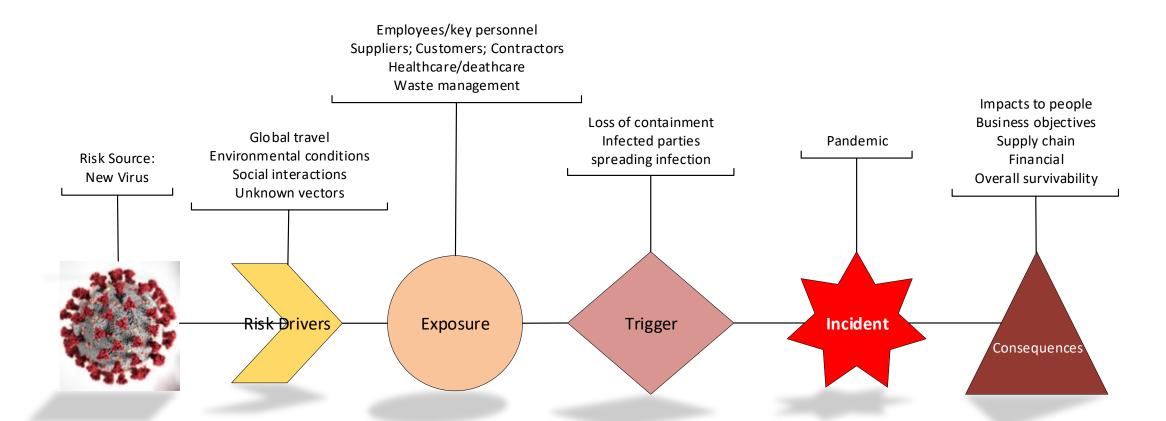
Professor, Geoscience, Physics and Safety (GPS) Sciences University of Central Missouri

- Dr. Popov teaches undergraduate and graduate courses in occupational risk.
- He holds a PhD from the National Scientific Board, M.S. in Nuclear Physics from Defense University in Bulgaria, and a post-graduate certification in Environmental Air Quality. In 2001, he graduated from the CGSC in Ft. Leavenworth, Kansas.
- Popov is a member of ASSP's Heart of America Chapter, recipient of the chapter's 2015 Safety Professional of the Year (SPY) award and 2016 ASSP Region V SPY award.
- He is co-author of "Risk Assessment: A Practical Guide for Assessing Operational Risk" published by Wiley, and "Risk Management Tools for Safety Professionals" published by ASSP.
- In 2017, Popov received ASSP's Outstanding Safety Educator award.

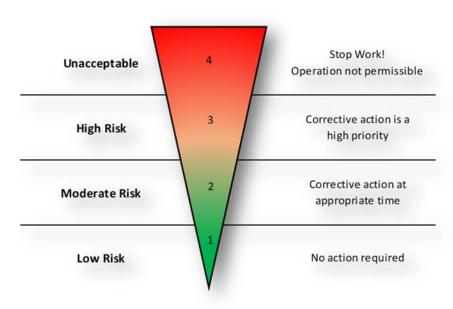
Risk Management Process Scope, Context, Criteria **Risk Assessment** Review ૹૼ Risk Communication Identification Consultation Monitoring & Risk **Analysis** Risk Evaluation **Risk Treatment** Recording & Reporting


Risk

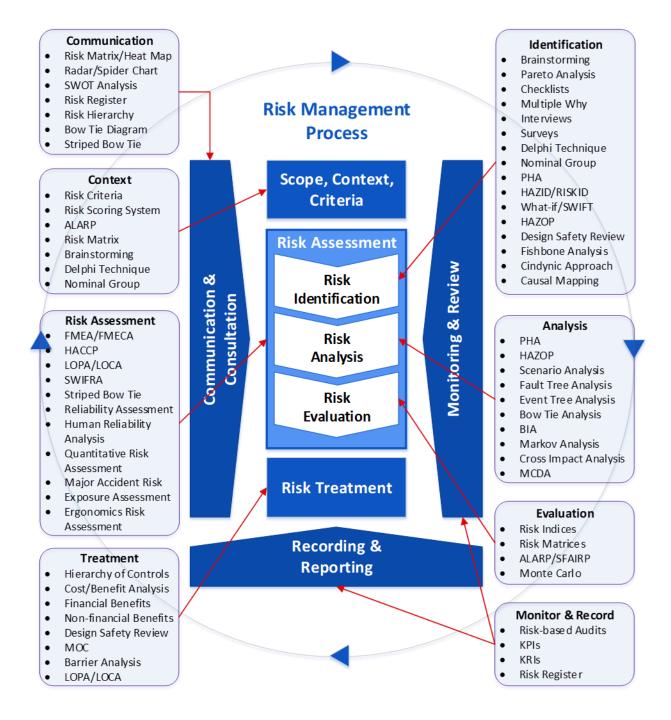
- Risk 'the effect of <u>uncertainty</u> on objectives' (ANSI/ASSP/ISO 31000)
- The Risk Management Process
- "Although the contemporary crisis is loaded with bad news, this has not been its primary problem. It's the 'unknown. Give me bad news any day over complete <u>uncertainty</u>." (Jim Paulsen, The Leuthold Group)



- Uncertainty surrounding the pandemic has led to:
 - Global Business Interruption
 - Healthcare system overloading
 - The Economy
 - Supply shortages
 - Cyber threats to remote work
 - Psychological stress, isolation
 - Job security, family health concerns
 - Public fears, rumors and change
 - Uncertainty about the future


SARS-CoV-2

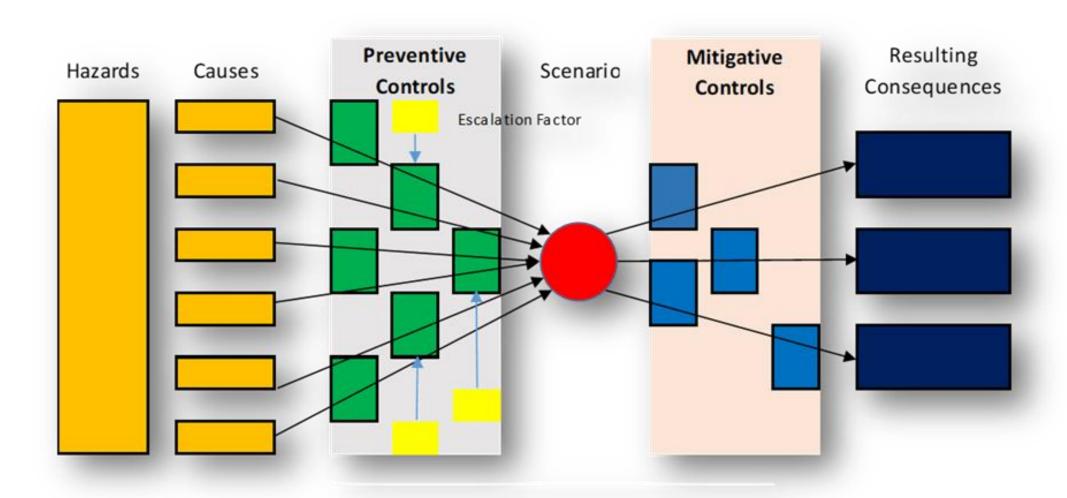
Risk Pathway



Establish Risk Criteria and Context

	Incident Ou	tcomes			Likelih	ood of Occ	urre nce	
Severity		Property	Environmental	1	2	3	4	5
Rating	Health Effects (People) Damage Impact		Very Unlikely	Unlikely	Possible	Likely	Very Likely	
5	Death or permanent total disability	Catastrophic damage	Significant impact	5	10	15	20	25
4	Permanent partial disability; hospitalizations of three or more people	Severe damage	Significant but reversible impact	4	8	12	16	20
3	Injury or occupational illness resulting in one or more days away from work	Significant damage	l reversible		6	9	12	15
2	injury or occupational illness not resulting in lost work days	Moderate damage	Minimal impact	2	4	6	8	10
1	First aid only; no injuries or illnesses	Light damage	No impact	1	2	3	4	5
	Very high risk = 15 or	greater; High ris	k = 9 to 14; Mode	rate risk=	5 to 8; Lo	w risk = 1t	o 4	

Select RA & RM Tools

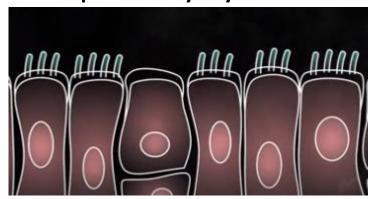

Assess Threats - 'What-if'?

			Structu	red What-if Ris	k As	sess	men	t (SWIFR	A)				
#	What If?	How?	Why?	Current Controls	L	S	Risk Level	Risk Level Acceptable (Y/N)	Additional Controls	L2	S 2	Risk Level 2	% RR
	we outsource 1/2 of our production to Asia? Answer: We'll save \$\$\$.	We can hire 2 operators for the same salary.	We want to diversify our supply chain	1 shift operation in our Midwest facility									
1	the operator is exposed to SARS CoV? Answer: Probable death or severe illness	Traveled to Asia to train operators there	Diversify production and save \$\$\$	Training and Good Hygiene practices	1	5	5	Υ	Temperature check upon return.	1	5	5	0%
2	the oprator COVID 19 is undetected? Answer: Possible multiple exposures	median incubation period for COVID-19 is just over 5 days	We need our experienced operator to improve productivity	Procedural training	1	5	5	Υ	Temperature check every day.	1	5	5	0%
3	multiple operators become ill due to SARS CoV2 exposure? Answer: Possible multiple fatalities and illnesses, business interruption	our RM was not aware that median incubation period for COVID-19 is just over 5 days	Emerging risk!	None (Inherent risk)	3	5	15	N	Bleach disinfection every day	2	5	10	33%

Are Layers of Protection Adequate?

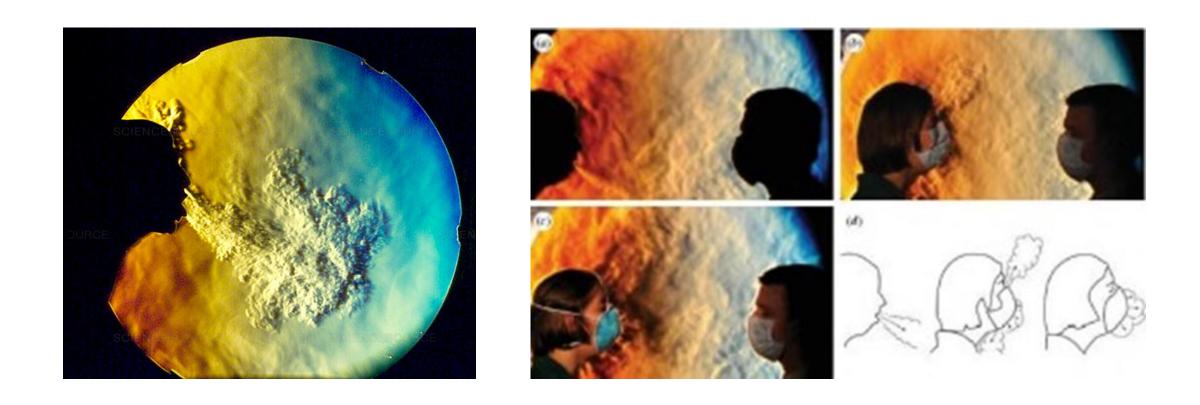
Event	Cause	Consequences	Current Lay of Protection (LOP)		ent State sting LO	• •	Combined Consequences	Combined Risks			RR	
			1	2	Severity	Likelihood	Risk Level	Top Event	S	L	Risk Sum	cs c
Potential SARS- CoV2	SARS-CoV2 exposed operator	Workers exposure.	posure. Admin (Clean w/Bleach) 5 2 10									
Low RH=11%	HVAC not properly operating	Minor respiratory irritation	None		2	1	2	Multiple Operators Exposed	5	3	15	13.5
Chlorine exposure	Cleaning w/Bleach	Minor respiratory irritation	None		3	1	3					

Communicate Risk

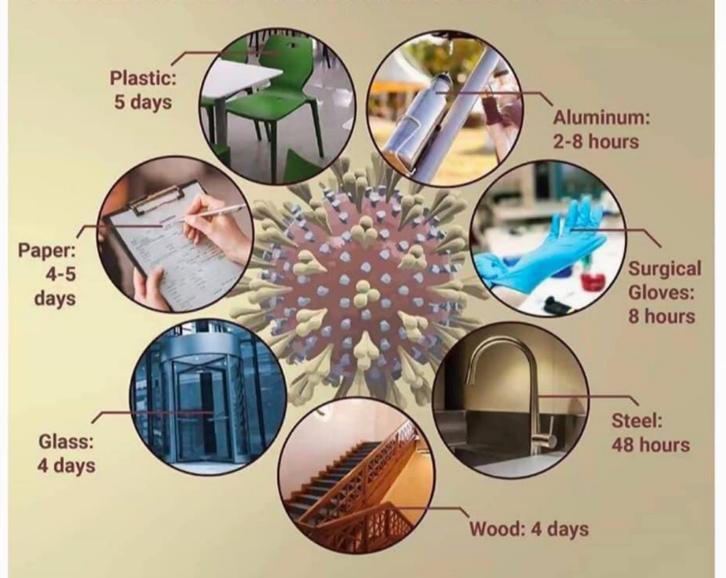

Emphasize Risk Summation

	Incident Ou	tcomes			Likelih	ood of Occ	urre nce	
Severity Rating			Environmental	1	2	3	4	5
	Health Effects (People)	Property Damage	Impact	Very Unlikely	Unlikely	Possible	Likely	Very Likely
5	Death or permanent total disability	Catastrophic damage	Significant Impact	5	10			
4	Permanent partial disability; hospitalizations of three or more people	Severe damage	Significant but reversible impact	4	8	12		
3	Injury or occupational illness resulting in one or more days away from work	Significant damage	Moderate reversible impact	3	6	9	12	
2	injury or occupational illness not resulting in lost work days	Moderate damage	Minimal impact	2	4	6	8	10
1	First aid only; no injuries or illnesses	Light damage	No impact	1	2	3	4	5

- SARS-CoV2 S=5; L=2: RL 10. We apply Admin. Controls cleaning every day.
- RH = 11% low humidity can dry out the mucus that normally coats your nose and airways - making it easier to get infected

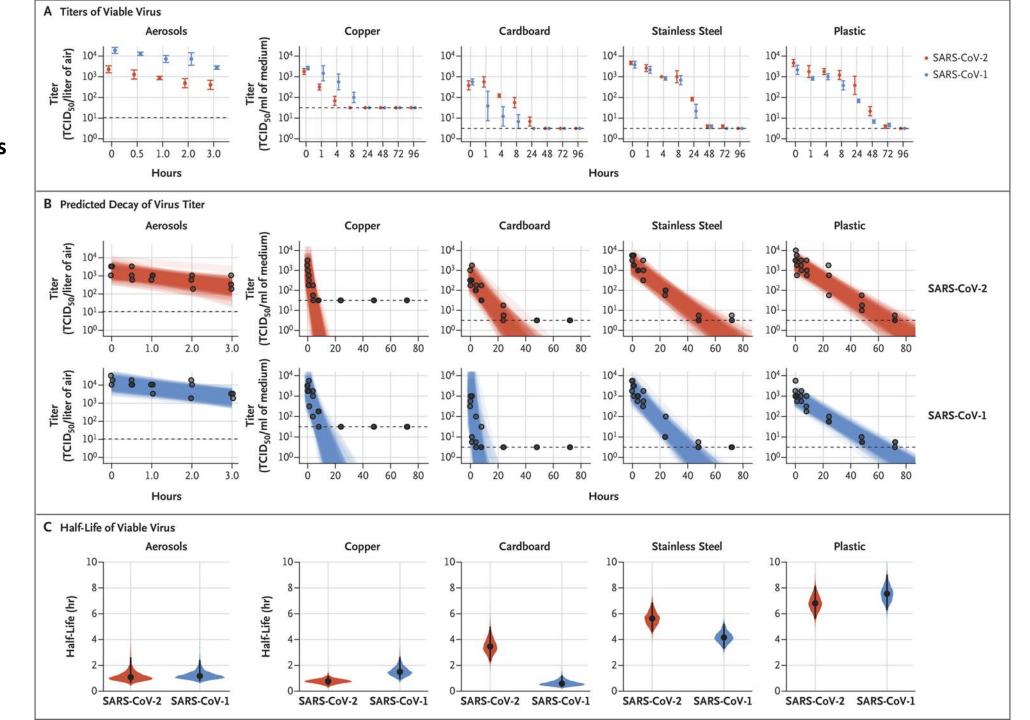

Chlorine also affects the respiratory system – weaker defenses

Source: National Geographic

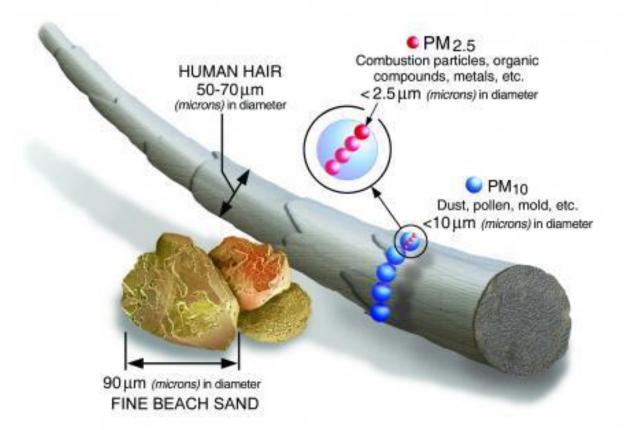

Transmission

Credit: Gary S. Settles/Science Source

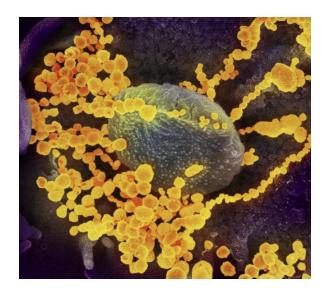
Persistence of Coronaviruses on Surfaces



Source: J. Hosp. Infect. DOI: https://doi.org/10.1016/j.jhin.2020.01.022


Note: Coronavirus activity may be impacted by temperatures higher than 86°F (30°C). Authors also confirm that coronavirus may be effectively wiped away by household disinfected. COVID-19 was NOT included in this study

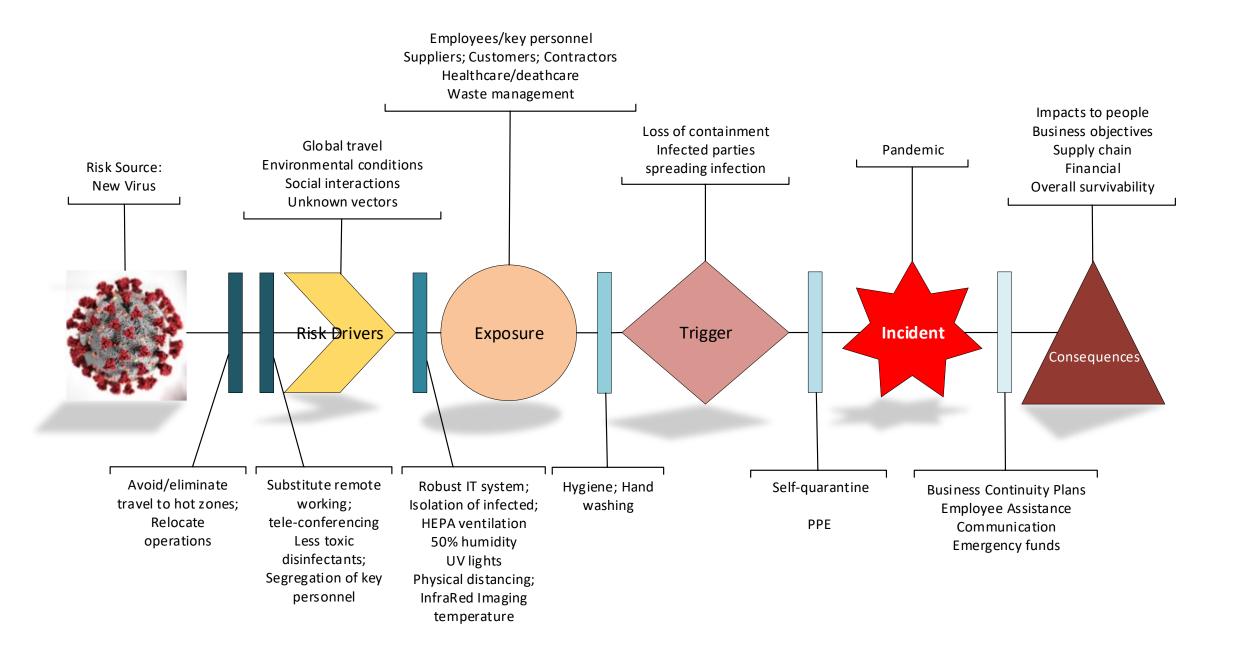
Medscape


Viability of SARS-CoV-1 and SARS-CoV-2 in Aerosols and on Various Surfaces.

Size Matters - Fine droplets

MERV Rating – Filter Efficiency

MERV 13	Less than 75%
MERV 14	75% - 84%
MERV 15	85% - 94%
MERV 16	95% or better



Standard 52.5 Minimum Efficiency Reporting Value	Dust Spot Efficiency	Arrestance	Typical Controlled Contaminant	Typical Applications and Limitations	Typical Air Filter/Cleaner Type
value	Efficiency	Arrestance	Contaminant	Limitations	>99.999% eff. On .1020 pm
20	n/a	n/a	< 0.30 pm particle size	Cleanrooms	Particles
19	n/a	n/a	Virus (unattached)	Radioactive Materials	Particles
18	n/a	n/a	Carbon Dust	Pharmaceutical Man.	Particulates
17	n/a	n/a	All Combustion smoke	Carcinogenetic Materials	>99.97% eff. On .30 pm Particles
16	n/a	n/a	.30-1.0 pm Particle Size	General Surgery	Bag Filter- Nonsupported
15	>95%	n/a	All Bacteria	Hospital Inpatient Care	microfine fiberglass or
14	90-95%	>98%	Most Tobacco Smoke	Smoking Lounges	synthetic media, 12-36 in. deep, 6- 12 pockets
40				Consider Communical Buildings	Box Filter- Rigid Style Cartridge Filters 6 to 12" deep m ay use
13	89-90%	>98%	Proplet Nuceli (Sneeze)	Superior Commercial Buildings	
12	70-75%	>95%	1.0-3.0 pm Particle Size	Superior Residential	Bag Filter- Nonsupported
11	60-65%	>95%	Legionella Humidifier Dust Lead Dust	Better Commercial Buildings	microfine fiberglass or synthetic media, 12-36 in. deep, 6- 12 pockets
10	50-55%	>95%	Milled Flour Auto Emissions	Hospital Laboratories	Box Filter- Rigid Style Cartridge Filters 6 to 12" deep m ay use lofted or paper media.
9	40-45%	>90%	Welding Fumes		
8	30-35%	>90%	3.0-10.0 pm Particle Size	Commercial Buildings	Pleated Filters- Disposable, extended surface area, thick with cotton-polyester blend media,
			Mold Spores		cardboard frame
7	25-30%	>90%	Hair Spray	Better Residential	
					Cartridge Filters- Graded density
			Febrie Dretester		viscous coated cube or pocket
6	<20%	9E 00%	Fabric Protector	last satrial Washalasa	filters, synthetic media
0	<20%	85-90%	Dusting Aids	Industrial Workplace	Throwaway- Disposable
			Cement Dust		synthetic panel filter.
5	<20%	80-85%	Pudding Mix	Paint Booth Inlet	

Hierarchy and Layers

Hierarchy of Risk Treatment	Type of Treatment	Effectiveness & Reliability
Avoid Eliminate		Complete
Substitute Minimize	Design & Redesign	Very High
Passive Control Active Control	Engineering	High
Warn Administrative	Administrative	Moderate Limited
PPE	Aummstrative	Very Low

Layers of Control Analysis

Event	Cause	se Consequences	Additional LOP					Combined Risks FS			LOMA			Consequences	Risk Reduction LOMA				
			2	3	4	5	6	7	S	L	Risk Sum	Eng. Layers	Admin Layers	Financial Layers	Conse	E RM	A RM	FRM	Residual Risk
Potential SARS- CoV2	SARS-CoV2 exposed operator	Workers exposure.	TI Camera - T Check	Social Distancing/ Warning	Ventilation w/MERV 14- 16	Separation 2 teams/2 shifts	between	PPE					Quarantine & Return to Work	1st Layer 100K retention	Serious Illness and or Fatalities	0.7	0.9	0.95	2.99
Low RH=11%	HVAC not properly operating	Minor respiratory irritation	\	Increase RH to 50-55%					5	1	5		Business Continuity Plan	2nd Layer 500K to primary	Financial Losses		0.9	0.95	4.28
Chlorine exposure	Cleaning w/Bleach	Minor respiratory irritation	Substitute Bleach w/Less										Temp. Workers	3rd Layer 1 M to Excess Carrier	Loss of productivity		0.9	0.95	4.28

Conclusions

Risk assessment and risk management methods could be used to address risks related to SARS-CoV 2

Layers of defenses have been used throughout the years and have proven to be effective in reducing the risk from multiple threats.

The OSH professional should consider this approach for the workplace when analyzing and designing risk reduction measures

Rarely is one control method adequate in preventing or protecting people, property or environment from harm.