A refreshing surge in technological innovations is changing our understanding of contemporary economic transformations and the associated environmental challenges. Global economic growth drives resource scarcity and the emergence of environmental issues. Thus, modern economic growth is inspiring the need to investigate potential environmental technology impacts on sustainability, renewable and nonrenewable energy performance, and novel innovative technology on green transformation process.

Nearly 70% of toxic waste and flooding sites in the U.S. are located near low-income housing and communities of color (Bergman, 2019; Dearen, Biesecker & Kastanis, 2017). Racial animus and the propensity for early exposure to vulnerable environments degrade human capital and depress lifetime earnings for a disproportionate number of black Americans and other minority groups, with a projected risk of about 459,000 job losses than white Americans due to industrial automation (Baboolall, Pinder, Stewart et al., 2018; Manduca & Sampson, 2019). The inhibiting effect of the wealth gap will cost the U.S. economy about $1.5 trillion of the projected GDP by 2028 (Baboolall et al., 2018). Financial inclusion is an essential link between economic opportunity and sustainable environment outcomes (Furusawa, 2016).

COVID-19 has delivered unexpected environmental gains such as cleaner air and water, lower toxic emissions, and a relief for wildlife. It is crucial to capitalize on these gains and continue to dialogue on appropriate environmental efficiency and effectiveness measures that will facilitate policy making and balance economic and social development in the quest of building a more sustainable society. Proactive environmental policies and strategies ensure a win-win with improvement in both environmental and economic outcomes where the adoption and implementation of innovative solutions lead to harmonization with other resources in the value chain.

Policies and actions designed to promote the conservation of the natural environment, enhance pollutant disposability and optimize output essentiality are positive outcomes of sustainable environmental practices. Hence, environmental professionals, sustainability analysts, policy makers, technology developers and technology adopters play critical roles in:

- providing the regulatory framework, contributing to the reduction of specific environmental impacts;
- facilitating dialogue surrounding the development and application of novel, enhanced technologies;
- promoting adequate social conditions that stimulate and hasten the successful adoption and implementation of these technologies as a top priority in the changing world.

Technology provides an amenable solution to tackle these issues helping to make the environment healthier, while ensuring that all communities have equal and adequate access to environmental protection programs.

There are numerous benefits from these innovative and inspiring technological advancements, which include:

- autonomous and connected vehicles for safer travel and route optimization in all communities;
- hydrogen in the energy transition with affordable hydrogen-powered fuel cell vehicles;
- electric public transit systems and electric trucks that reduce emissions;
- Google cars mapping air pollution and estimating the health effects in real time;
- use of the Industrial Internet of Things to manage energy expenditure and reduce emissions in smart factories;
- smart agriculture in which sensors help to modulate the amount of chemicals on the field and the chemical migration;
- wearable bracelets for tracking daily chemical exposures;
- drone technology used to vaccinate endangered species;
- space solar power and carbon capture, utilization and storage technologies;
- cheap long-term energy storage;
- 3D printing technology for hazardous materials elimination and substitution;
- blockchain technology for improving accountability and sustainability across the supply chain networks with intentional focus on minority communities;
- smart policies, contracts documentation and reporting of impact assessments.

Everything around us (in our environment) is in the value chain. Technology is helping us understand the impact on the environment better than ever before, resulting in sustainable ecosystem stewardship, which will help maintain a healthy environment that accommodates social change in a robust global economy.

Groups around the world are advancing the course of posterity and prosperity in efforts to advance this environmental agenda, particularly after the excruciating impact of the COVID-19 pandemic. Solutions to local and global sustainability challenges are developed to benefit all, when we connect and share. When practitioners, specialists, scientists, students, engineers, innovators, teachers, business owners and all stakeholders come together, great things happen.

For ASSP members, our Environmental Practice Specialty is an important avenue through which to leverage the connection between environmental solutions, safety and health knowledge, and job creation. The practice specialty provides an avenue for our collective efforts to yield productive outcomes. The group
ASSP CONNECTION

is stronger with your support, working
together to contribute to taking actions
across scales that can help shape the
future rather than focusing on bringing
back the past or on attaining perfection.
We can achieve this through empowering
knowledge sharing that can affect the
national regulatory framework through
awareness of the value of human-environ-
ment interactions.

As we transition into the post-COVID-19
era, I encourage all members to think about
how you can take action to get involved in
environmental issues.

Engage between meetings. Environmental
Practice Specialty members can
join our open call meetings; it is even
more important to stay in touch with
fellow members between meetings and to
stay current with emerging environmen-
tal trends and topics, which is now possi-
ble especially with access to many social
media and virtual networking platforms.
Practice specialty members can help ele-
vate issues they encounter on the horizon
that can be shared with everyone and
provide feedback that will help our prac-
tice continuously improve.

Engage with strategies as they form. Strategic alliance with diverse ex-
periences and pattern-recognition skills of experienced members would empower
all to add significant value to the Soci-
ety. This is possible when members are
participating early during the strategy
development, which becomes a shared
and collaborative process in which differ-
ent opinions are valued and respected. In
effect, this contributes to the overall ef-
fort of the Society and make us proactive
at addressing contemporary issues and
providing real-time value to all members.

Actively cultivate talents. The suc-
cess of every organization lies in proper
planning for promotion and succession.
The goal of the Environmental Practice
Specialty is to move from simply engaging
and monitoring talents to actively cul-
tivating environmental practice talents.
Experienced members can help to mentor
high-performing members, which allows
for a broader talent pool that will fill fu-
ture practice specialty leadership roles and
positions. Mentees gain experience
through the engagement process, which
creates passionate, enthusiastic successors
for the continuity of the practice specialty.

Engage the environmental field. Mem-
ers are welcome to participate and
assume roles in specific Environmental
Practice Specialty initiatives, such as
clean technologies, environmental im-
pact innovations and solutions, technol-
ogy advancements initiatives, standards
and regulations, and environmental
risk management and control. The goal
is to provide competency knowledge in
a nonintrusive but collaborative way in
all environmental application areas so
that the practice specialty can serve as a
resource for educators, professionals and
the industry.

Engage on technical questions. The
Environmental Practice Specialty is eager
to work with its membership to explore
the value of providing a platform to
discuss complex strategic issues and, im-
portantly, asking technical questions that
extend beyond the strategy and agenda to
a wide range of issues. The focus is not on
whether members have industry experi-
ence, but whether they have access to par-
ticipate on all practice specialty platforms
to ask important questions and contribute
to the shared knowledge.

The recognition that everyone is a peer
by connecting the dots between issues,
bridging disparate points, and building a
functional practice group with the capacity
to respond to environmental challenges as they arise is a quintessen-
tial vision of the Environmental Practice
Specialty.

To future Environmental Practice Spe-
cialty members, please join us and let us
connect on this environmental agenda that
is nonprescriptive and all-inclusive. Being a
member presents opportunities for:
• continued environmental education
 through programs, seminars, webinars
 and meetings;
• interactions with professional peers
 for knowledge sharing;
• peer mentoring and skills development;
• exposure to emerging environmental
 technology solutions;
• professional recognition and leader-
 ship development.

A special invitation to future leaders:
I encourage ASSP student members to
become engaged with the Environmental
Practice Specialty. Here is how:
• Discuss environmental issues within
 your ASSP student section.
• Carry out projects on environmental
topics and share your work.

References
Baboolal, D., Pinder, D., Stewart, S., et al.
(2018, Nov. 14). Automation and the future of
the African American workforce. McKinsey &
Co. Retrieved from www.mckinsey.com/fea-
tured-insights/future-of-work/automation-
and-the-future-of-the-african-american-
workforce
Bergman, M.M. (2019, Mar. 8). “They chose us
because we were rural and poor”: When
environmental racism and climate change col-
mate-changed-racism-environment-south
Dearen, J., Biesecker, M. & Kastanis, A.
(2017, Dec. 22). AP finds climate change risk
for 327 toxic Superfund sites. AP News. Re-
trieved from https://apnews.com/31765cc6d102
4458b8805ce738edcb36b
Furusawa, M. (2016, Sept. 20). Financial inclu-
sion: Bridging economic opportunities and out-
comes. International Monetary Fund. Retrieved
sp092016-financial-inclusion-bridging-economic-
opportunities-and-outcomes
Manduca, R. & Sampson, R.J. (2019). Punish-
ing and toxic neighborhood environments
independently predict the intergenerational
social mobility of black and white children.
Proceedings of the National Academy of Sci-
ences of the United States of America, 116(16),
7772-7777. doi:10.1073/pnas.1820464116

Richard Olawoyin, Ph.D., CSP, is an associate professor of industrial and systems engineering
at Oakland University, Rochester, MI, where he also serves as faculty adviser for the National Society
of Black Engineers. He is a book author and chief editor, and has authored many peer-reviewed journal
articles. Olawoyin is a National Science Foundation panel reviewer, a member of the ABET Inclusion,
Diversity and Equity Advisory Council, ABET Accreditation Council (training committee subgroup) and
an ABET Accreditation Commission member. Olawoyin is a professional member of ASSP’s Greater Detroit
Chapter and serves as Administrator of the ASSP Environmental Practice Specialty. He is the recipient of
the 2019 Charles V. Culbertson Outstanding Volunteer Service Award.