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SITUATIONAL AWARENESS is essential for worker safety in the
architecture, engineering and construction (AEC) industry, as
alack of it can lead to human errors and unsafe behaviors. One
main factor affecting situational awareness in daily activities is
cognitive fatigue. However, there is very limited work that ex-
plores the impact of task complexity on cognitive fatigue. This
pilot study examines the effect of task complexity on cognitive
fatigue levels using assembly tasks in a controlled laboratory
setting. In the experiment, engineering students assembled truss
bridges from balsa wood under two experimentally defined com-
plexity levels that differed in design, such as the number of joints
and member lengths. A wearable electroencephalography (EEG)
was used to capture the brain signals of participants, and cogni-
tive fatigue indexes were computed from EEG data for each com-
plexity level. Participants were also asked to complete the NASA
Task Load Index (NASA-TLX; a questionnaire that measures
cognitive workload across six factors) survey to evaluate their
experience with the experiment. The authors found that higher
cognitive fatigue corresponded with high-complexity tasks. Al-
though the experiment was conducted with student participants
in a nonconstruction setting, the tasks’ spatial reasoning, fine
motor demands and time pressure reflect the cognitive demands
found in real assembly and other activities in the construction
and broader AEC industries. This study provides insights into
how task complexity can impact worker cognitive fatigue in
safety-critical environments where sustained attention is com-
mon, which is expected to enhance effective hazard prevention
and interventions to foster safer working environments.

KEY TAKEAWAYS

oThis study employed an electroencephalography (EEG) device to
measure brain activities and assess cognitive fatigue, a significant
factor leading to errors and unsafe behaviors in assembly tasks in
the architecture, engineering and construction (AEC) industry. This
article emphasizes the crucial role of cognitive fatigue assessment
in ensuring workers' safety.

oThis article provides insights into cognitive fatigue in assembly tasks
with respect to task complexity. This knowledge enhances task design
and allocation, ultimately enhancing safety and efficiency in AEC.
oThe findings reveal a direct correlation between task complexity
levels and cognitive fatigue, indicating that higher complexity tasks
led to increased cognitive fatigue among participants. Future research
could explore individual differences (e.g., age, gender, training level)
and validate these findings in real working settings with more workers.
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Introduction

The AEC industry is facing a significant challenge from
cognitive fatigue, as cognitive fatigue affects workers’ decision-
making process (Zhang et al., 2023). Studies have shown that
cognitive fatigue can increase risk susceptibility, affect atten-
tion and awareness, and lead to unsafe behaviors, which can
further threaten the safety of workers on sites (Xing et al.,
2020). A report by the National Safety Council (2018) revealed
that 97% of the workforce was affected by at least one work-
place fatigue risk factor, with 80% experiencing two or more.
Fatigue accounted for up to 13% of workplace injuries and af-
fected 94% of construction workers.

To investigate worker cognitive fatigue, multiple methodol-
ogies and technologies were employed; these include subjective
metrics such as the NASA-TLX (Chen et al., 2017; Li et al., 2019)
and visual analog scale, cognition measures (e.g., reaction time
and vigilance test) some physiological metrics (such as heart rate
variability); technologies such as eye trackers and EEG have been
explored for this regard (Melo et al., 2017; Noghabaei et al., 2021).
Studies have identified biomarkers for cognitive fatigue in the
human brain, particularly in the frontal, central and posterior
regions (Tran et al., 2020). The findings of existing studies so-
lidify the appropriateness of using EEG to monitor brain signals
for cognitive fatigue assessment. Multiple studies have explored
the impact of various factors such as age, sleep deprivation,
stress, workload and gender on cognitive fatigue (Chen et al.,
2022; Pergher et al., 2021; Wascher & Getzmann, 2014; Zhang
et al., 2021). However, the relationship between task complexity
or difficulty and cognitive fatigue remains ambiguous and un-
clear for assembly tasks in the AEC industry (Gu & Guo, 2022;
Muiioz-de-Escalona et al., 2020; Xu et al., 2018). The knowledge
and comprehension that exist regarding the association of task
complexity with cognitive fatigue of workers is very limited, par-
ticularly for those workers engaged in assembly activities.

Therefore, this study examined how task difficulty could in-
fluence cognitive fatigue by utilizing EEG to measure participant
brain activity while constructing bridges with balsa wood sticks.
The experiment for this study involved high- and low-complexity
tasks. The obtained findings enhance the understanding of cog-
nitive fatigue in assembly tasks. Gaining insights into how task
complexity could affect cognitive fatigue enables the optimization
of workforce and task allocation, development of more targeted in-
terventions, and enhancement of job-specific training in the AEC
industry, ultimately enhancing both safety and performance.
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Objective

This study explores how task complexity affects cognitive
fatigue in assembly tasks to enhance the safety of workers. To
achieve this goal, this study used EEG to test the hypothesis:
workers experience higher levels of cognitive fatigue when un-
dertaking assembly tasks at higher difficulty levels (compared
to cases with lower difficulty levels). Examining this hypothesis
offers deeper insights, such as identifying workers with high
cognitive fatigue levels and reducing errors and unsafe behav-
iors. The knowledge gained may enhance task design and allo-
cation, ultimately enhancing safety and efficiency in assembly
and other activities in the AEC industry.

Methodology
Study Design

This study examines how task complexity affects cognitive
fatigue during assembly-related tasks in the AEC industry. A
controlled laboratory experiment was conducted with a small
group of male engineering students as participants. Each
participant completed two types of bridge assembly tasks cat-
egorized into low and high complexity, allowing the study to
compare results within individuals. The tasks were designed
with minimal body movement and lightweight balsa wood
sticks to minimize the effects of physical motions on brain sig-
nals. The spatial reasoning, fine motor demands and time pres-
sure required to perform the designed tasks in the experiment
reflect the cognitive demands found in real assembly and other
activities in the construction and broader AEC industries.

To assess cognitive fatigue, the study used two methods.
First, an EEG device was used to capture and measure brain
signals using electrodes placed on the scalp. The EEG sig-
nals were preprocessed to effectively remove noise caused by
motion and other artifacts (Tehrani et al., 2022). Second, the
NASA-TLX, a short survey, was administered to capture partic-
ipant ratings of how mentally and physically demanding each
task felt (Chen et al., 2017; Li et al., 2019). The results for low-
and high-complexity tasks were compared using the Wilcoxon
signed-rank test, a statistical method suitable for paired data
in small samples. The study compared the paired samples to
determine whether a significant difference in cognitive levels
existed between low and high task complexity conditions, as

. well as whether high cognitive workload was associated with
high-complexity tasks. The significance level for the hypothesis
was set at p = 0.05.

EEG Data Collection, Preprocessing & Analysis

In this study, brain signals were collected using an Easycap
SMARTING EEG cap with 24 electrodes (also called channels;
Mbto, n.d.). Signals were sampled at 250 Hz (approximately 250
data points per second) while participants performed the tasks.
Raw EEG data were cleaned to remove noise from eyeblinks,
muscle movements, head turns and environmental interfer-
ences (Jebelli et al., 2018) and were then processed with the
EEGLAB toolbox in MATLAB (Delorme & Makeig, 2004). The
data cleaning steps involved a 0.5 Hz high-pass filter, automat-
ically detecting and correcting brief disruptions, manual data
inspection to ensure quality, and separating useful brain sig-
nals using independent component analysis (Chang et al., 2019;
Wang et al., 2019).
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EEG Channel Selection for Cognitive Fatigue

Although the EEG cap used in this study had 24 sensor loca-
tions, previous studies have identified the most effective chan-
nels for capturing cognitive fatigue. Therefore, this study used
13 channels: five over the frontal region, three in the central
region, three in the parietal region near the top and back of the
head, and two in the occipital region at the back of the head. By
focusing on these four regions with the targeted channels, this
study examined how task complexity affects cognitive fatigue.

Cognitive Fatigue Indexes

Electrodes on the cap measure EEG signals, indicating stress,
burnout and cognitive fatigue (Wang et al., 2019). EEG signals
have five basic wave bands, including delta (§), theta (6), alpha
(o), beta (B), and gamma (y; Li et al., 2019). Previous studies
have shown that when people are cognitively fatigued, 6 and a
values increase, while  values decrease (Kar et al., 2010; Zhao
et al., 2012). In addition to these basic indexes, ratio indexes
such as 6/a, 0/ and (0+a)/p have been used by several studies,
which found that these indexes show increasing values when an
individual experiences cognitive fatigue (Eoh et al., 2005; Jap
etal.,, 2009). In this study, three basic indexes (6, a and ) and
three ratio indexes (8/a, 6/p and (8+a)/B) were used to provide
insight into each participant’s cognitive fatigue levels.

Sample Entropy

In addition to the basic and ratio indexes, this study also
used sample entropy to assess cognitive fatigue. Sample entropy
is another useful indicator in EEG signal analysis, quantifying
the complexity and unpredictability of signals (Sharma et al.,
2014). Specifically, cognitive fatigue impacts brain activities,
slowing cognitive processes and attention, which results in
more regular neural activity patterns, as evidenced by low en-
tropy values (Richman & Moorman, 2000).

NASA Task Load Index

After each bridge assembly, participants filled out the
NASA-TLX questionnaire to assess six aspects by rating them 0
(very low) to 20 (very high): mental demand, physical demand,
temporal demand, performance, effort and frustration (Li et
al., 2020). While EEG signal indexes offer objective measures
of brain activities, the NASA-TLX captures the subjective
experience of participants regarding these six aspects. The
results from the EEG signal analysis were compared with the
NASA-TLX scores to understand the relationship between per-
ceived workload and measured cognitive load.

FIGURE 1
EEG CAP USED IN STUDY

Easycap EEG cap with 24 channels and wireless smarting device.
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Experiment for Data Collection

The Institutional Review Board approved the experiment
(protocol number 22-120). Ten male students in engineering
from Mississippi State University participated in the experiment.
They were required to have completed the Graphic Communica-
tions course and to abstain from caffeine and alcohol for at least
24 hours before the experiment. EEG caps were worn to mon-
itor brain activities with a sampling rate of 250 Hz (Figure 1).
Two types of bridge drawings were prepared: high-complexity
and low-complexity bridge structures (Figure 2). The high-
complexity bridge required more detailed work and took longer
to build. Participants needed proficiency in interpreting complex
drawings, measuring elements and understanding details rele-
vant to the experiment tasks. Preliminary observation trials were
conducted to determine the appropriate time for the experiment.
Each experiment lasted 120 minutes, with 90 minutes dedi-
cated to bridge building. The ten male participants performed
high-complexity bridge and low-complexity bridge construction
on separate days (i.e., each participant committed 4 hours to
the experiment). Among them, five participants conducted the
high-complexity task first, and the other five participants con-
ducted the low complexity first. It is worth noting the significant
difficulties in recruiting participants due to the long experiment
duration, EEG cap setup challenges (e.g., hair did not work with
the EEG gel), and the required skills. In fact, the authors recruit-
ed more than ten participants; however, the EEG setup was suc-
cessfully completed for only ten. At the end of each experiment,
participants completed the NASA-TLX questionnaire.

Data Analysis & Results
Effect of Task Complexity Levels on Cognitive Fatigue

Cognitive Fatigue Indexes

The analysis of basic indexes (6, a and p) and the ratio index-
es [6/a, 0/f and (8+a)/B] for both complexity levels are discussed
for cognitive fatigue assessment. The Wilcoxon signed-rank test
compared the median values of basic and ratio indexes between
subjects in high- and low-complexity tasks. Table 1 presents the
significant difference values (p) for the basic and ratio indexes. It
was found that most of the p-values were less than 0.05, suggesting
that there was sufficient evidence to support that cognitive fatigue in
high-complexity tasks was significantly different from that in low-
complexity tasks. In addition, as demonstrated in Figure 3 (p. 26), all
channels exhibited elevated values of 6 (indicating a higher level of
cognitive fatigue) during high-complexity tasks as compared with
low-complexity tasks. Previous studies demonstrated that higher
values of 0/a, 0/ and (6+)/p indicated higher cognitive fatigue. The
ratio indexes shown in Table 1 and Figure 3 [only (8+a)/p is shown in
Figure 3b due to limited space] demonstrated that higher cognitive
fatigue levels were associated with the high-complexity tasks.

Sample Entropy

In sample entropy analysis, valuable information about the
complexity and randomness of brain activity can be found. A
lower degree of disorder in sample entropy values may indicate
that a participant felt higher cognitive fatigue (Gao et al., 2019).
In this study, the sample entropy for channels FP1, FP2, F3, F4,
C4, FZ and CZ showed lower values in the high-complexity tasks
compared to the ones in the low-complexity tasks, as shown in
Figure 4 (p. 26). On the other hand, the sample entropy values
were higher in the high-complexity tasks than in the low-com-
plexity tasks for EEG channels C3, P3, P4, O1, O2 and PZ. The
results show that the frontal region of the brain (FP1, FP2, F3



and F4), a region highly related to cog-
nitive fatigue, had lower entropy values,
indicating a higher cognitive fatigue level.
In general, the observed entropy values for
most channels showed higher cognitive
fatigue in the high-complexity tasks.

NASA-TLX

The NASA-TLX questionnaire was
given to participants after every exper-
iment. The median, standard deviation
(SD), and p-values of complexity levels for
mental demand, physical demand, tem-
poral demand, performance, effort and
frustration are shown in Table 2 (p. 27).
The median values for mental demand,
performance and effort are higher for tasks
with a high complexity level than those
with a low complexity level. Conversely,
while physical and temporal demand
demonstrated equal median values, frus-
tration exhibited a lower median value
for the high-complexity tasks. Despite
this, the Wilcoxon signed-rank test cal-
culated p-values greater than 0.05 for all
NASA-TLX indicators, suggesting no sig-
nificant difference between the cognitive
fatigue levels of participants in high- and
low-complexity tasks.

Summary of
Results & Discussion

This study shows evidence to support
that high cognitive fatigue levels are gen-
erally associated with tasks with high dif-
ficulty levels. For example, high cognitive
fatigue is often associated with higher
values of 6, and increased values of 6/a,
0/B and (0+a)/p are associated with higher
cognitive fatigue [shown in Figure 3 (p. 26)
and Table 1]. Furthermore, lower sample
entropy values for high-complexity tasks
indicated that more regular or ordered
signals led to higher cognitive fatigue
compared to the cases in low-complexity

TABLE 1

FIGURE 2
BRIDGE DRAWINGS

Bridge drawings: High-complexity bridge (a) and low-complexity bridge (b).

Keep to add the same modular B to your bridge until the experiment time is over.

. Modular®
| h N
| | [ ) S—
| f e | ]E ==
/ | P LTl
il | il re
! J | Wclm on this
___________________________ __ _'.__'.__'___"."1@_"'?5_. S pertmoddarAfist - Side View
. Front View
)
- L - -
] g -
E_’ Note:
‘ | » Member a will be connected at a distance of 2 inches
Tﬂp-{’iew from the connection paint of members d and & and to
the mid paint of member d as shown in the Front and
Top views.
= Member b will be connected from the connection
point of members d and e to the mid point of
member a.
Deck plan « Member ¢ will connect the mid paints of members a.
= Al measurements are in inch.
(@)
Parker Truss Bridge
- Keep to add the same modular to your
Start to work from this side bridge until the experiment time is over
..... P
] — 1 O\ |
sl o | apo
Li \
[ i I I L I I I | ! [
LOne mcdular| \Ons modular
Front View Side View
850
Top View Note: )
All dimensions are in
; inch
(b) Warren Truss Bridge

WILCOXON SIGNED-RANK TEST RESULTS: P-VALUES

Index FP1 FP2 F3 F&4 c3 C4 P3 P4 o1 02 FZ cz PZ

0 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.106 0.005
a 0.005 0.084 0.007 0.009 0.005 0.005 0.009 0.075 0.169 0.959 0.005 0.017 0.005
B 0.007 0.013 0.005 0.022 0.005 0.007 0.059 0445 0.017 0.017 0.005 0.022 0.013
0/a 0.005 0.005 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.022 0.005 0.005 0.005
6/ 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.022 0.013 0.005 0.005 0.005

(0+a)/8  0.005 0.005 0.005

0.037 0.005 0.005 0.007 0.007 0.139 0.028 0.005 0.005 0.005

Note. p < 0.05 indicates a significant difference, and p > 0.05 indicates no significant difference.
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FIGURE 3
MEDIAN COMPARISON

Median comparison of basic index and ratio indexes. tasks. The NASA-TLX outcomes showed

Basic index 0 vs. EEG channels

FIGURE 4
SAMPLE ENTROPY FOR THE SELECTED CHANNELS
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evidence-based strategies to reduce
cognitive-related risks. For example, site
supervisors could rotate ironworkers

who assemble steel frames from higher-
complexity tasks (e.g., overhead welding

of steel members) to lower-complexity
similar tasks (e.g., installing and tightening
bolts on steel members at ground levels) to
reduce sustained high cognitive workload.

14 Similar methods could be applied to other
12 roles as well; for example, excavator oper-
: ators working on high-complexity tasks

1 such as a precision trench excavation near
utilities could reduce cognitive fatigue by
rotating to lower-complexity excavation

U tasks or by optimizing the work schedules.
These insights extend beyond general
0.6 labor to roles such as project planners,
quality inspectors and safety officers. In
0.4 the AEC industry, for example, architects
and design professionals are involved in
0.2 high-complexity tasks such as creating
complicated digital models and inte-
o

grating multiple systems into designs.
To reduce the cognitive fatigue for these
design professionals, managers could
methodically rotate the professionals



to lower-complexity tasks or optimize TABLE 2
breaks between tasks. Although wearing
EEG equipment during daily work is

challenging, with rapid technological ad-

vancements, combining EEG-based cog-

MEDIAN OF NASA-TLX

Median, SD, and p-value of NASA-TLX for high- and low-complexity tasks.

nitive fatigue monitoring with supportive Median

tools and safety protocols (such as real- . = = -

time fatigue monitoring) remains highly Metrics High complexity Low complexity SD p

promising for the future for effectively Mental demand 7.000 4.000 4408 0.123

managing workers’ cognitive fatigue and Physical demand 1.000 1.000 4216 0.465

ensuring safer working environments. Temporal demand 5.000 5.000 5.626 0.767
In addition to task complexity, age is a Performance 9.000 7.000 3.765 0.859

factor affecting worker cognitive fatigue. Effort 10.000 6.000 5350 0405

In this study, all participants were under- Frustration 2.000 4.000 5533 (0.754

graduate students within a very narrow age

range, so the age factor was not considered.
The experimental tasks were conducted
in a controlled environment, not a real construction environ-
ment. For future studies, especially when testing the proposed
methodology with workers in real construction tasks to validate
and expand upon the obtained findings, age would be an import-
ant factor to consider. Also, all participants in this study were
male students, which limits the generalizability of the results
to the broader population, including women, people of diverse
ages or experienced workers. The designed experiment in this
study required participants to have graphical reading skills and
involved a lengthy duration (240 minutes required), and the ap-
plication of conductive gel on the scalp discouraged many from
participating. As a result, the final sample size was small and
limited to male students. This study originally included an explo-
ration of the differences in cognitive fatigue levels between male
and female participants (i.e., the gender factor) while performing
the tasks at the same difficulty level. Although the authors ac-
tively recruited more female participants, the final sample size
remained smaller than anticipated due to practical challenges
(e.g., failed setup of EEG and applying gel and sensors to par-
ticipants with long, thick hair). Thus, in this study, the outcome
of gender differences with cognitive fatigue was not presented.
For future studies, getting insight into the effect of gender-based
differences on cognitive fatigue would also have practical impli-
cations in designing and assigning tasks in the AEC industry.
Moreover, each participant’s performance in the bridge build-
ing was not considered while evaluating cognitive fatigue index-
es, although the experiment required that all participants had
completed the Graphic Communications course. In the future,
participants’ performance in completing tasks can be considered
in cognitive fatigue analysis to get more in-depth insight.

Conclusion, Limitations & Future Work

This study investigated the impact of task difficulty on cog-
nitive fatigue for safety enhancement using a controlled exper-
iment with assembly tasks. Researchers used an EEG device to
detect brain activity in participants when they performed tasks
continuously throughout the experiment. Basic and ratio in-
dexes and sample entropy were used to measure brain activities
during cognitive tasks for cognitive fatigue assessment. The
outcomes indicate strong evidence that high cognitive fatigue
levels are generally associated with higher complexity task
levels. This study contributes to the knowledge by providing
insight into the cognitive fatigue domain for workers engaged
in different difficulty levels of tasks. The findings have the po-
tential to enable the construction and broader AEC industries

to optimize workforce allocation, lead to more targeted inter-
ventions and enhance job-specific training, ultimately reducing
injuries and fatalities. PSJ

Acknowledgment

The authors gratefully acknowledge the financial support of the
Deep South Occupational Safety and Health Education and Re-
search Center at the University of Alabama at Birmingham for
this research (Sponsor Award No.: 000535051-SP006-SC005).
The views expressed in this article are those of the authors and
do not necessarily reflect the views or policies of the sponsor.

References

Chang, C.Y., Hsu, S.H., Pion-Tonachini, L. & Jung, T.P. (2019). Evalu-
ation of artifact subspace reconstruction for automatic artifact compo-
nents removal in multi-channel EEG recordings. IEEE Transactions on
Biomedical Engineering, 67(4), 1114-1121. https://doi.org/ggbrpc

Chen, Y., Fang, W., Guo, B. & Bao, H. (2022). The moderation effects
of task attributes and cognitive fatigue on post-interruption task perfor-
mance in a concurrent multitasking environment. Applied Ergonomics,
102, 103764. https://doi.org/10.1016/j.apergo.2022.103764

Chen, C,, Li, K., Wu, Q., Wang, H., Qian, Z. & Sudlow, G. (2013).
EEG-based detection and evaluation of fatigue caused by watching
3DTV. Displays, 34(2), 81-88. https://doi.org/10.1016/j.displa.2013.01.002

Chen, J., Taylor, J.E. & Comu, S. (2017). Assessing task mental work-
load in construction projects: A novel electroencephalography approach.
Journal of Construction Engineering and Management, 143(8), 04017053.
https://doi.org/10.1061/(ASCE)CO0.1943-7862.0001345

Delorme, A. & Makeig, S. (2004). EEGLAB: An open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis. Journal of Neuroscience Methods, 134(1), 9-21. https://doi.org/bqr2f2

Eoh, H.J., Chung, M.K. & Kim, S.H. (2005). Electroencephalographic
study of drowsiness in simulated driving with sleep deprivation. Inter-
national Journal of Industrial Ergonomics, 35(4), 307-320. https://doi
.org/b257w7

Gao, Z,,Li, S., Cai, Q., Dang, W., Yang, Y., Mu, C. & Hui, P. (2019).
Relative wavelet entropy complex network for improving EEG-based
fatigue driving classification. IEEE Transactions on Instrumentation and
Measurement, 68(7), 2491-2497. https://doi.org/qjkj

Gu, J. & Guo, F. (2022). How fatigue affects the safety behaviour in-
tentions of construction workers an empirical study in Hunan, China.
Safety Science, 149, 105684. https://doi.org/10.1016/j.ss¢i.2022.105684

Jap, B.T., Lal, S., Fischer, P. & Bekiaris, E. (2009). Using EEG spectral
components to assess algorithms for detecting fatigue. Expert Systems
with Applications, 36(2), 2352-2359. https://doi.org/fbf6zd

Jebelli, H., Hwang, S. & Lee, S. (2018). EEG signal-processing frame-
work to obtain high-quality brain waves from an off-the-shelf wearable
EEG device. Journal of Computing in Civil Engineering, 32(1), 04017070.
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000719

assp.org JANUARY 2026 PROFESSIONAL SAFETY PSJ 27



Kar, S., Bhagat, M. & Routray, A. (2010). EEG signal analysis for the
assessment and quantification of driver’s fatigue. Transportation Re-
search Part F: Traffic Psychology and Behaviour, 13(5), 297-306. https://
doi.org/10.1016/j.trf.2010.06.006

Li, X., Chen, P, Yu, X. & Jiang, N. (2022). Analysis of the relationship be-
tween motor imagery and age-related fatigue for CNN classification of the
EEG data. Frontiers in Aging Neuroscience, 14, 909571. https://doi.org/qjkk

Li, J., Li, H., Umer, W., Wang, H., Xing, X, Zhao, S. & Hou, J. (2020).
Identification and classification of construction equipment operators’
cognitive fatigue using wearable eye-tracking technology. Automation in
Construction, 109, 103000. https://doi.org/10.1016/j.autcon.2019.103000

Li,J., Li, H., Wang, H., Umer, W., Fu, H. & Xing, X. (2019). Evaluating
the impact of mental fatigue on construction equipment operators’ abil-
ity to detect hazards using wearable eye-tracking technology. Automa-
tion in Construction, 105, 102835. https://doi.org/gg53gh

Li, G, Li, B., Wang, G., Zhang, ]. & Wang, J. (2017). A new method for
human cognitive fatigue detection with several EEG channels. Journal of
Medical and Biological Engineering, 37(2), 240-247. https://doi.org/
10.1007/s40846-017-0224-6

Mbto. (n.d.). Smarting S. https://bit.ly/4rWX5]B

Melo, H.M., Nascimento, L.M. & Takase, E. (2017). Mental fatigue
and heart rate variability (HRV): The time-on-task effect. Psychology
and Neuroscience, 10(4), 428-436. https://doi.org/10.1037/pne0000110

Muiioz-de-Escalona, E., Caas, J.J. & Noriega, P. (2020). Inconsisten-
cies between cognitive fatigue measures under compensatory control
theories. Psicoldgica Journal, 41(2), 103-126. https://doi.org/qjkm

National Safety Council (NSC). (2018). Fatigue in safety-critical in-
dustries: Impact, risks and recommendations. https://bit.ly/4rWQoHz

Noghabaei, M., Han, K. & Albert, A. (2021). Feasibility study to iden-
tify brain activity and eye-tracking features for assessing hazard recog-
nition using consumer-grade wearables in an immersive virtual envi-
ronment. Journal of Construction Engineering and Management, 147(9),
04021104. https://doi.org/10.1061/(ASCE)C0O.1943-7862.0002130

Pergher, V., Vanbilsen, N. & Van Hulle, M. (2021). The effect of
cognitive fatigue and gender on working memory performance during
repeated practice by young and older adults. Neural Plasticity, 2021(1),
6612805. https://doi.org/10.1155/2021/6612805

Richman, J.S. & Moorman, J.R. (2000). Physiological time-series
analysis using approximate entropy and sample entropy. Ameri-
can Journal of Physiology-Heart and Circulatory Physiology, 278(6),
H2039-H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039

Sharma, R., Pachori, R. & Acharya, U. (2014). Application of entropy
measures on intrinsic mode functions for the automated identification
of focal Electroencephalogram signals. Entropy, 17(2), 669-691. https://
doi.org/10.3390/e17020669

Tehrani, B.M., Wang, J. & Truax, D. (2022). Assessment of cognitive
fatigue using electroencephalography (EEG) and virtual reality (VR) for

construction fall hazard prevention. Engineering, Construction and Ar-
chitectural Management, 29(9), 3593-3616. https://doi.org/gmédgq

Tran, Y., Craig, A., Craig, R., Chai, R. & Nguyen, H. (2020). The influ-
ence of cognitive fatigue on brain activity: Evidence from a systematic
review with meta-analyses. Psychophysiology, 57(5), e13554. https://doi
.org/10.1111/psyp.13554

Tyas, A.E., Dharma Wibawa, A. & Purnomo, M.H. (2020). Theta,
Alpha and Beta activity in the occipital based on EEG signals for cogni-
tive fatigue in high school students. In 2020 International Conference on
Smart Technology and Applications (ICoSTA), 1-7, IEEE. https://doi.org/
10.1109/1C0oSTA48221.2020.1570614141

Wang, D, Li, H. & Chen, J. (2019). Detecting and measuring con-
struction workers’ vigilance through hybrid kinematic-EEG signals.
Automation in Construction, 100, 11-23. https://doi.org/qjkn

Wang, J., Wu, Y., Qu, H., & Xu, G. (2014). EEG-based fatigue driving
detection using correlation dimension. Journal of Vibroengineering,
16(1), 407-413.

Wascher, E. & Getzmann, S. (2014). Rapid cognitive fatigue amplifies
age-related attentional deficits. Journal of Psychophysiology, 28(3), 215-
224. https://doi.org/10.1027/0269-8803/2000127

Xing, X., Zhong, B., Luo, H., Rose, T., Li, J. & Antwi-Afari, M. F.
(2020). Effects of physical fatigue on the induction of cognitive fatigue
of construction workers: A pilot study based on a neurophysiological ap-
proach. Automation in Construction, 120, 103381. https://doi.org/
10.1016/j.autcon.2020.103381

Xu, R, Zhang, C., He, F,, Zhao, X., Qi, H., Zhou, P., Zhang, L. &
Ming, D. (2018). How physical activities affect cognitive fatigue based on
EEG energy, connectivity and complexity. Frontiers in Neurology, 9, 915.
https://doi.org/10.3389/fneur.2018.00915

Zhang, Z., Xiang, T., Guo, H., Ma, L., Guan, Z. & Fang, Y. (2023).
Impact of physical and cognitive fatigue on construction workers’ un-
safe behavior based on physiological measurement. Journal of Safety
Research, 85, 457-468. https://doi.org/10.1016/j.jsr.2023.04.014

Zhang, H., Wang, ]., Geng, X, Li, C. & Wang, S. (2021). Objective
assessments of cognitive fatigue during a continuous long-term stress
condition. Frontiers in Human Neuroscience, 15, 733426. https://doi
.org/10.3389/fnhum.2021.733426

Zhao, C., Zhao, M., Liu, J. & Zheng, C. (2012). Electroencephalogram
and electrocardiograph assessment of cognitive fatigue in a driving simu-
lator. Accident Analysis and Prevention, 45, 83-90. https://doi.org/fxrbxv

Cite this article

Gugssa, M., Assafi, M.N., Wang, J., Pan, Z. & Chen, J. (2026, Jan.).
Cognitive fatigue and task complexity: Ensuring worker safety in
construction and engineering. Professional Safety, 71(1), 22-28.

Mikias Gugssa is a Ph.D. candidate and grad-
uate research assistant at the Richard A. Rula
School of Civil and Environmental Engineering
at Mississippi State University. He holds an M.Sc.
and a B.Sc. in Civil Engineering from Addis Ababa
University, Ethiopia. His research focuses on
integrating advanced technologies to enhance
construction safety.

Mohammad Nafe Assafi is a Ph.D. student at

the Richard A. Rula School of Civil and Environmen-

tal Engineering at Mississippi State University. He
holds an M.Sc. in Civil Engineering from Mississippi
State University and B.Sc. in Building Engineering
and Construction Management from Khulna Uni-

versity of Engineering and Technology, Bangladesh.

He is employed as a graduate research assistant
within the Rula School. His research interests focus
on safe human-robot interactions in construction
using artificial intelligence and robotics.

Jun Wang, Ph.D., is an assistant professor in
Richard A. Rula School of Civil and Environmental
Engineering at Mississippi State University. She

is the director of the Mississippi Transportation
Research Center. Wang's research mainly focuses
on smart construction, human-robot interac-
tion, and the applications of automation and
artificial intelligence in construction engineering
and management. Wang received the National
Science Foundation Faculty Early Career De-
velopment CAREER award in 2024. She holds a
Ph.D. degree in Civil Engineering from McMaster
University, Canada, and an M.Sc. and B.Sc. from
Dalian University of Technology, China.

Zhujun Pan, Ph.D., is an associate professor
in the Department of Kinesiology at Mississippi
State University and codirector of the Cognitive
Motor Control Laboratory. Her research focuses
on cognitive motor control, motor function in

28 PSJ PROFESSIONAL SAFETY JANUARY 2026 assp.org

older adults and Parkinson's disease patients,
bimanual coordination and transfer of learning,
and exercise intervention for special populations.
Pan holds a Ph.D. in Kinesiology from Louisiana
State University, an M.Sc. in Kinesiology from

the Capital Institute of Physical Education, and
aB.Sc. in Electronic Engineering from Southwest
Jiaotong University, China.

Jingdao Chen, Ph.D., is an assistant pro-
fessor in the Department of Computer Science
and Engineering at Mississippi State University.
Chen's research focuses on robotics, computer
vision and machine learning, including con-
struction robotics, disaster relief robotics, dig-
ital twins and Scan-to-BIM. Chen holds a Ph.D.
in Robotics, an M.Sc. in Computer Science from
Georgia Institute of Technology, and a B.Sc. in
Electrical Engineering from Washington Univer-
sity in St. Louis.



