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SSITUATIONAL AWARENESS is essential for worker safety in the 
architecture, engineering and construction (AEC) industry, as 
a lack of it can lead to human errors and unsafe behaviors. One 
main factor affecting situational awareness in daily activities is 
cognitive fatigue. However, there is very limited work that ex-
plores the impact of task complexity on cognitive fatigue. This 
pilot study examines the effect of task complexity on cognitive 
fatigue levels using assembly tasks in a controlled laboratory 
setting. In the experiment, engineering students assembled truss 
bridges from balsa wood under two experimentally defined com-
plexity levels that differed in design, such as the number of joints 
and member lengths. A wearable electroencephalography (EEG) 
was used to capture the brain signals of participants, and cogni-
tive fatigue indexes were computed from EEG data for each com-
plexity level. Participants were also asked to complete the NASA 
Task Load Index (NASA-TLX; a questionnaire that measures 
cognitive workload across six factors) survey to evaluate their 
experience with the experiment. The authors found that higher 
cognitive fatigue corresponded with high-complexity tasks. Al-
though the experiment was conducted with student participants 
in a nonconstruction setting, the tasks’ spatial reasoning, fine 
motor demands and time pressure reflect the cognitive demands 
found in real assembly and other activities in the construction 
and broader AEC industries. This study provides insights into 
how task complexity can impact worker cognitive fatigue in 
safety-critical environments where sustained attention is com-
mon, which is expected to enhance effective hazard prevention 
and interventions to foster safer working environments.

Introduction
The AEC industry is facing a significant challenge from 

cognitive fatigue, as cognitive fatigue affects workers’ decision-
making process (Zhang et al., 2023). Studies have shown that 
cognitive fatigue can increase risk susceptibility, affect atten-
tion and awareness, and lead to unsafe behaviors, which can 
further threaten the safety of workers on sites (Xing et al., 
2020). A report by the National Safety Council (2018) revealed 
that 97% of the workforce was affected by at least one work-
place fatigue risk factor, with 80% experiencing two or more. 
Fatigue accounted for up to 13% of workplace injuries and af-
fected 94% of construction workers. 

To investigate worker cognitive fatigue, multiple methodol-
ogies and technologies were employed; these include subjective 
metrics such as the NASA-TLX (Chen et al., 2017; Li et al., 2019) 
and visual analog scale, cognition measures (e.g., reaction time 
and vigilance test) some physiological metrics (such as heart rate 
variability); technologies such as eye trackers and EEG have been 
explored for this regard (Melo et al., 2017; Noghabaei et al., 2021). 
Studies have identified biomarkers for cognitive fatigue in the 
human brain, particularly in the frontal, central and posterior 
regions (Tran et al., 2020). The findings of existing studies so-
lidify the appropriateness of using EEG to monitor brain signals 
for cognitive fatigue assessment. Multiple studies have explored 
the impact of various factors such as age, sleep deprivation, 
stress, workload and gender on cognitive fatigue (Chen et al., 
2022; Pergher et al., 2021; Wascher & Getzmann, 2014; Zhang 
et al., 2021). However, the relationship between task complexity 
or difficulty and cognitive fatigue remains ambiguous and un-
clear for assembly tasks in the AEC industry (Gu & Guo, 2022; 
Muñoz-de-Escalona et al., 2020; Xu et al., 2018). The knowledge 
and comprehension that exist regarding the association of task 
complexity with cognitive fatigue of workers is very limited, par-
ticularly for those workers engaged in assembly activities. 

Therefore, this study examined how task difficulty could in-
fluence cognitive fatigue by utilizing EEG to measure participant 
brain activity while constructing bridges with balsa wood sticks. 
The experiment for this study involved high- and low-complexity 
tasks. The obtained findings enhance the understanding of cog-
nitive fatigue in assembly tasks. Gaining insights into how task 
complexity could affect cognitive fatigue enables the optimization 
of workforce and task allocation, development of more targeted in-
terventions, and enhancement of job-specific training in the AEC 
industry, ultimately enhancing both safety and performance.

KEY TAKEAWAYS
•This study employed an electroencephalography (EEG) device to 
measure brain activities and assess cognitive fatigue, a significant 
factor leading to errors and unsafe behaviors in assembly tasks in 
the architecture, engineering and construction (AEC) industry. This 
article emphasizes the crucial role of cognitive fatigue assessment 
in ensuring workers’ safety.
•This article provides insights into cognitive fatigue in assembly tasks 
with respect to task complexity. This knowledge enhances task design 
and allocation, ultimately enhancing safety and efficiency in AEC.
•The findings reveal a direct correlation between task complexity 
levels and cognitive fatigue, indicating that higher complexity tasks 
led to increased cognitive fatigue among participants. Future research 
could explore individual differences (e.g., age, gender, training level) 
and validate these findings in real working settings with more workers.

COGNITIVE FATIGUE  
& TASK COMPLEXITY
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Objective
This study explores how task complexity affects cognitive 

fatigue in assembly tasks to enhance the safety of workers. To 
achieve this goal, this study used EEG to test the hypothesis: 
workers experience higher levels of cognitive fatigue when un-
dertaking assembly tasks at higher difficulty levels (compared 
to cases with lower difficulty levels). Examining this hypothesis 
offers deeper insights, such as identifying workers with high 
cognitive fatigue levels and reducing errors and unsafe behav-
iors. The knowledge gained may enhance task design and allo-
cation, ultimately enhancing safety and efficiency in assembly 
and other activities in the AEC industry.

Methodology
Study Design

This study examines how task complexity affects cognitive 
fatigue during assembly-related tasks in the AEC industry. A 
controlled laboratory experiment was conducted with a small 
group of male engineering students as participants. Each 
participant completed two types of bridge assembly tasks cat-
egorized into low and high complexity, allowing the study to 
compare results within individuals. The tasks were designed 
with minimal body movement and lightweight balsa wood 
sticks to minimize the effects of physical motions on brain sig-
nals. The spatial reasoning, fine motor demands and time pres-
sure required to perform the designed tasks in the experiment 
reflect the cognitive demands found in real assembly and other 
activities in the construction and broader AEC industries.

To assess cognitive fatigue, the study used two methods. 
First, an EEG device was used to capture and measure brain 
signals using electrodes placed on the scalp. The EEG sig-
nals were preprocessed to effectively remove noise caused by 
motion and other artifacts (Tehrani et al., 2022). Second, the 
NASA-TLX, a short survey, was administered to capture partic-
ipant ratings of how mentally and physically demanding each 
task felt (Chen et al., 2017; Li et al., 2019). The results for low- 
and high-complexity tasks were compared using the Wilcoxon 
signed-rank test, a statistical method suitable for paired data 
in small samples. The study compared the paired samples to 
determine whether a significant difference in cognitive levels 
existed between low and high task complexity conditions, as 
well as whether high cognitive workload was associated with 
high-complexity tasks. The significance level for the hypothesis 
was set at p = 0.05.

EEG Data Collection, Preprocessing & Analysis
In this study, brain signals were collected using an Easycap 

SMARTING EEG cap with 24 electrodes (also called channels; 
Mbto, n.d.). Signals were sampled at 250 Hz (approximately 250 
data points per second) while participants performed the tasks. 
Raw EEG data were cleaned to remove noise from eyeblinks, 
muscle movements, head turns and environmental interfer-
ences (Jebelli et al., 2018) and were then processed with the 
EEGLAB toolbox in MATLAB (Delorme & Makeig, 2004). The 
data cleaning steps involved a 0.5 Hz high-pass filter, automat-
ically detecting and correcting brief disruptions, manual data 
inspection to ensure quality, and separating useful brain sig-
nals using independent component analysis (Chang et al., 2019; 
Wang et al., 2019).
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EEG Channel Selection for Cognitive Fatigue
Although the EEG cap used in this study had 24 sensor loca-

tions, previous studies have identified the most effective chan-
nels for capturing cognitive fatigue. Therefore, this study used 
13 channels: five over the frontal region, three in the central 
region, three in the parietal region near the top and back of the 
head, and two in the occipital region at the back of the head. By 
focusing on these four regions with the targeted channels, this 
study examined how task complexity affects cognitive fatigue.

Cognitive Fatigue Indexes
Electrodes on the cap measure EEG signals, indicating stress, 

burnout and cognitive fatigue (Wang et al., 2019). EEG signals 
have five basic wave bands, including delta (δ), theta (θ), alpha 
(α), beta (β), and gamma (γ; Li et al., 2019). Previous studies 
have shown that when people are cognitively fatigued, θ and α 
values increase, while β values decrease (Kar et al., 2010; Zhao 
et al., 2012). In addition to these basic indexes, ratio indexes 
such as θ/α, θ/β and (θ+α)/β have been used by several studies, 
which found that these indexes show increasing values when an 
individual experiences cognitive fatigue (Eoh et al., 2005; Jap 
et al., 2009). In this study, three basic indexes (θ, α and β) and 
three ratio indexes (θ/α, θ/β and (θ+α)/β) were used to provide 
insight into each participant’s cognitive fatigue levels.

Sample Entropy
In addition to the basic and ratio indexes, this study also 

used sample entropy to assess cognitive fatigue. Sample entropy 
is another useful indicator in EEG signal analysis, quantifying 
the complexity and unpredictability of signals (Sharma et al., 
2014). Specifically, cognitive fatigue impacts brain activities, 
slowing cognitive processes and attention, which results in 
more regular neural activity patterns, as evidenced by low en-
tropy values (Richman & Moorman, 2000).

NASA Task Load Index
After each bridge assembly, participants filled out the 

NASA-TLX questionnaire to assess six aspects by rating them 0 
(very low) to 20 (very high): mental demand, physical demand, 
temporal demand, performance, effort and frustration (Li et 
al., 2020). While EEG signal indexes offer objective measures 
of brain activities, the NASA-TLX captures the subjective 
experience of participants regarding these six aspects. The 
results from the EEG signal analysis were compared with the 
NASA-TLX scores to understand the relationship between per-
ceived workload and measured cognitive load.

Experiment for Data Collection
The Institutional Review Board approved the experiment 

(protocol number 22-120). Ten male students in engineering 
from Mississippi State University participated in the experiment. 
They were required to have completed the Graphic Communica-
tions course and to abstain from caffeine and alcohol for at least 
24 hours before the experiment. EEG caps were worn to mon-
itor brain activities with a sampling rate of 250 Hz (Figure 1). 
Two types of bridge drawings were prepared: high-complexity 
and low-complexity bridge structures (Figure 2). The high-
complexity bridge required more detailed work and took longer 
to build. Participants needed proficiency in interpreting complex 
drawings, measuring elements and understanding details rele-
vant to the experiment tasks. Preliminary observation trials were 
conducted to determine the appropriate time for the experiment. 
Each experiment lasted 120 minutes, with 90 minutes dedi-
cated to bridge building. The ten male participants performed 
high-complexity bridge and low-complexity bridge construction 
on separate days (i.e., each participant committed 4 hours to 
the experiment). Among them, five participants conducted the 
high-complexity task first, and the other five participants con-
ducted the low complexity first. It is worth noting the significant 
difficulties in recruiting participants due to the long experiment 
duration, EEG cap setup challenges (e.g., hair did not work with 
the EEG gel), and the required skills. In fact, the authors recruit-
ed more than ten participants; however, the EEG setup was suc-
cessfully completed for only ten. At the end of each experiment, 
participants completed the NASA-TLX questionnaire.

Data Analysis & Results
Effect of Task Complexity Levels on Cognitive Fatigue

Cognitive Fatigue Indexes
The analysis of basic indexes (θ, α and β) and the ratio index-

es [θ/α, θ/β and (θ+α)/β] for both complexity levels are discussed 
for cognitive fatigue assessment. The Wilcoxon signed-rank test 
compared the median values of basic and ratio indexes between 
subjects in high- and low-complexity tasks. Table 1 presents the 
significant difference values (p) for the basic and ratio indexes. It 
was found that most of the p-values were less than 0.05, suggesting 
that there was sufficient evidence to support that cognitive fatigue in 
high-complexity tasks was significantly different from that in low-
complexity tasks. In addition, as demonstrated in Figure 3 (p. 26), all 
channels exhibited elevated values of θ (indicating a higher level of 
cognitive fatigue) during high-complexity tasks as compared with 
low-complexity tasks. Previous studies demonstrated that higher 
values of θ/α, θ/β and (θ+α)/β indicated higher cognitive fatigue. The 
ratio indexes shown in Table 1 and Figure 3 [only (θ+α)/β is shown in 
Figure 3b due to limited space] demonstrated that higher cognitive 
fatigue levels were associated with the high-complexity tasks.

Sample Entropy
In sample entropy analysis, valuable information about the 

complexity and randomness of brain activity can be found. A 
lower degree of disorder in sample entropy values may indicate 
that a participant felt higher cognitive fatigue (Gao et al., 2019). 
In this study, the sample entropy for channels FP1, FP2, F3, F4, 
C4, FZ and CZ showed lower values in the high-complexity tasks 
compared to the ones in the low-complexity tasks, as shown in 
Figure 4 (p. 26). On the other hand, the sample entropy values 
were higher in the high-complexity tasks than in the low-com-
plexity tasks for EEG channels C3, P3, P4, O1, O2 and PZ. The 
results show that the frontal region of the brain (FP1, FP2, F3 

FIGURE 1
EEG CAP USED IN STUDY

Easycap EEG cap with 24 channels and wireless smarting device. 
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and F4), a region highly related to cog-
nitive fatigue, had lower entropy values, 
indicating a higher cognitive fatigue level. 
In general, the observed entropy values for 
most channels showed higher cognitive 
fatigue in the high-complexity tasks.

NASA-TLX
The NASA-TLX questionnaire was 

given to participants after every exper-
iment. The median, standard deviation 
(SD), and p-values of complexity levels for 
mental demand, physical demand, tem-
poral demand, performance, effort and 
frustration are shown in Table 2 (p. 27). 
The median values for mental demand, 
performance and effort are higher for tasks 
with a high complexity level than those 
with a low complexity level. Conversely, 
while physical and temporal demand 
demonstrated equal median values, frus-
tration exhibited a lower median value 
for the high-complexity tasks. Despite 
this, the Wilcoxon signed-rank test cal-
culated p-values greater than 0.05 for all 
NASA-TLX indicators, suggesting no sig-
nificant difference between the cognitive 
fatigue levels of participants in high- and 
low-complexity tasks.

Summary of  
Results & Discussion

This study shows evidence to support 
that high cognitive fatigue levels are gen-
erally associated with tasks with high dif-
ficulty levels. For example, high cognitive 
fatigue is often associated with higher 
values of θ, and increased values of θ/α, 
θ/β and (θ+α)/β are associated with higher 
cognitive fatigue [shown in Figure 3 (p. 26) 
and Table 1]. Furthermore, lower sample 
entropy values for high-complexity tasks 
indicated that more regular or ordered 
signals led to higher cognitive fatigue 
compared to the cases in low-complexity 

FIGURE 2
BRIDGE DRAWINGS

Bridge drawings: High-complexity bridge (a) and low-complexity bridge (b). 

(a)

(b)

Index FP1 FP2 F3 F4 C3 C4 P3 P4 O1 O2 FZ CZ PZ 
θ 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.106 0.005 
α 0.005 0.084 0.007 0.009 0.005 0.005 0.009 0.075 0.169 0.959 0.005 0.017 0.005 
β 0.007 0.013 0.005 0.022 0.005 0.007 0.059 0.445 0.017 0.017 0.005 0.022 0.013 
θ/α 0.005 0.005 0.005 0.007 0.005 0.005 0.005 0.005 0.005 0.022 0.005 0.005 0.005 
θ/β 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.022 0.013 0.005 0.005 0.005 
(θ+α)/β 0.005 0.005 0.005 0.037 0.005 0.005 0.007 0.007 0.139 0.028 0.005 0.005 0.005 

 

TABLE 1
WILCOXON SIGNED-RANK TEST RESULTS: P-VALUES

Note. p < 0.05 indicates a significant difference, and p > 0.05 indicates no significant difference.
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tasks. The NASA-TLX outcomes showed 
that metrics such as mental demand, 
physical demand, temporal demand, effort 
and frustration had higher mean values 
for high-complexity tasks in participants, 
which aligned with the findings of cogni-
tive fatigue indexes. 

Understanding the relationship between 
task complexity and cognitive fatigue levels 
for assembly tasks has several practical im-
plications (e.g., optimized task assignments 
and scheduling). Specifically, to enhance 
workers’ safety, the following measures 
could be taken to reduce and manage their 
cognitive fatigue during work: 

•breaking down complex tasks into 
smaller or manageable subtasks, 

•allocating tasks based on workers’ 
expertise to minimize unfamiliarity of 
complex tasks, 

•conducting task rotation strategies or 
setting up breaks between subtasks, 

•developing training for workers with 
complex tasks, 

•scheduling high-complexity tasks 
during periods of peak alertness, such as 
earlier work shifts, and 

•identifying tasks with high complexity 
and cognitive workload to implement ad-
ditional safety measures. 

Taking the construction context as 
an example, understanding how task 
complexity contributes to cognitive 
fatigue could enable construction man-
agers and safety officers to implement 
evidence-based strategies to reduce 
cognitive-related risks. For example, site 
supervisors could rotate ironworkers 
who assemble steel frames from higher-
complexity tasks (e.g., overhead welding 
of steel members) to lower-complexity 
similar tasks (e.g., installing and tightening 
bolts on steel members at ground levels) to 
reduce sustained high cognitive workload. 
Similar methods could be applied to other 
roles as well; for example, excavator oper-
ators working on high-complexity tasks 
such as a precision trench excavation near 
utilities could reduce cognitive fatigue by 
rotating to lower-complexity excavation 
tasks or by optimizing the work schedules. 

These insights extend beyond general 
labor to roles such as project planners, 
quality inspectors and safety officers. In 
the AEC industry, for example, architects 
and design professionals are involved in 
high-complexity tasks such as creating 
complicated digital models and inte-
grating multiple systems into designs. 
To reduce the cognitive fatigue for these 
design professionals, managers could 
methodically rotate the professionals  
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to lower-complexity tasks or optimize 
breaks between tasks. Although wearing 
EEG equipment during daily work is 
challenging, with rapid technological ad-
vancements, combining EEG-based cog-
nitive fatigue monitoring with supportive 
tools and safety protocols (such as real-
time fatigue monitoring) remains highly 
promising for the future for effectively 
managing workers’ cognitive fatigue and 
ensuring safer working environments.

In addition to task complexity, age is a 
factor affecting worker cognitive fatigue. 
In this study, all participants were under-
graduate students within a very narrow age 
range, so the age factor was not considered. 
The experimental tasks were conducted 
in a controlled environment, not a real construction environ-
ment. For future studies, especially when testing the proposed 
methodology with workers in real construction tasks to validate 
and expand upon the obtained findings, age would be an import-
ant factor to consider. Also, all participants in this study were 
male students, which limits the generalizability of the results 
to the broader population, including women, people of diverse 
ages or experienced workers. The designed experiment in this 
study required participants to have graphical reading skills and 
involved a lengthy duration (240 minutes required), and the ap-
plication of conductive gel on the scalp discouraged many from 
participating. As a result, the final sample size was small and 
limited to male students. This study originally included an explo-
ration of the differences in cognitive fatigue levels between male 
and female participants (i.e., the gender factor) while performing 
the tasks at the same difficulty level. Although the authors ac-
tively recruited more female participants, the final sample size 
remained smaller than anticipated due to practical challenges 
(e.g., failed setup of EEG and applying gel and sensors to par-
ticipants with long, thick hair). Thus, in this study, the outcome 
of gender differences with cognitive fatigue was not presented. 
For future studies, getting insight into the effect of gender-based 
differences on cognitive fatigue would also have practical impli-
cations in designing and assigning tasks in the AEC industry.

Moreover, each participant’s performance in the bridge build-
ing was not considered while evaluating cognitive fatigue index-
es, although the experiment required that all participants had 
completed the Graphic Communications course. In the future, 
participants’ performance in completing tasks can be considered 
in cognitive fatigue analysis to get more in-depth insight.

Conclusion, Limitations & Future Work
This study investigated the impact of task difficulty on cog-

nitive fatigue for safety enhancement using a controlled exper-
iment with assembly tasks. Researchers used an EEG device to 
detect brain activity in participants when they performed tasks 
continuously throughout the experiment. Basic and ratio in-
dexes and sample entropy were used to measure brain activities 
during cognitive tasks for cognitive fatigue assessment. The 
outcomes indicate strong evidence that high cognitive fatigue 
levels are generally associated with higher complexity task 
levels. This study contributes to the knowledge by providing 
insight into the cognitive fatigue domain for workers engaged 
in different difficulty levels of tasks. The findings have the po-
tential to enable the construction and broader AEC industries 

to optimize workforce allocation, lead to more targeted inter-
ventions and enhance job-specific training, ultimately reducing 
injuries and fatalities.  PSJ

Acknowledgment
The authors gratefully acknowledge the financial support of the 
Deep South Occupational Safety and Health Education and Re-
search Center at the University of Alabama at Birmingham for 
this research (Sponsor Award No.: 000535051-SP006-SC005). 
The views expressed in this article are those of the authors and 
do not necessarily reflect the views or policies of the sponsor.

References
Chang, C.Y., Hsu, S.H., Pion-Tonachini, L. & Jung, T.P. (2019). Evalu-

ation of artifact subspace reconstruction for automatic artifact compo-
nents removal in multi-channel EEG recordings. IEEE Transactions on 
Biomedical Engineering, 67(4), 1114-1121. https://doi.org/ggbrpc

Chen, Y., Fang, W., Guo, B. & Bao, H. (2022). The moderation effects 
of task attributes and cognitive fatigue on post-interruption task perfor-
mance in a concurrent multitasking environment. Applied Ergonomics, 
102, 103764. https://doi.org/10.1016/j.apergo.2022.103764

Chen, C., Li, K., Wu, Q., Wang, H., Qian, Z. & Sudlow, G. (2013). 
EEG-based detection and evaluation of fatigue caused by watching 
3DTV. Displays, 34(2), 81-88. https://doi.org/10.1016/j.displa.2013.01.002

Chen, J., Taylor, J.E. & Comu, S. (2017). Assessing task mental work-
load in construction projects: A novel electroencephalography approach. 
Journal of Construction Engineering and Management, 143(8), 04017053. 
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001345

Delorme, A. & Makeig, S. (2004). EEGLAB: An open source toolbox for 
analysis of single-trial EEG dynamics including independent component 
analysis. Journal of Neuroscience Methods, 134(1), 9-21. https://doi.org/bqr2f2

Eoh, H.J., Chung, M.K. & Kim, S.H. (2005). Electroencephalographic 
study of drowsiness in simulated driving with sleep deprivation. Inter-
national Journal of Industrial Ergonomics, 35(4), 307-320. https://doi 
.org/b257w7

Gao, Z., Li, S., Cai, Q., Dang, W., Yang, Y., Mu, C. & Hui, P. (2019). 
Relative wavelet entropy complex network for improving EEG-based 
fatigue driving classification. IEEE Transactions on Instrumentation and 
Measurement, 68(7), 2491-2497. https://doi.org/qjkj

Gu, J. & Guo, F. (2022). How fatigue affects the safety behaviour in-
tentions of construction workers an empirical study in Hunan, China. 
Safety Science, 149, 105684. https://doi.org/10.1016/j.ssci.2022.105684

Jap, B.T., Lal, S., Fischer, P. & Bekiaris, E. (2009). Using EEG spectral 
components to assess algorithms for detecting fatigue. Expert Systems 
with Applications, 36(2), 2352-2359. https://doi.org/fbf6zd

Jebelli, H., Hwang, S. & Lee, S. (2018). EEG signal-processing frame-
work to obtain high-quality brain waves from an off-the-shelf wearable 
EEG device. Journal of Computing in Civil Engineering, 32(1), 04017070. 
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000719

Metrics 
Median 

SD p High complexity Low complexity 
Mental demand 7.000 4.000 4.408 0.123 
Physical demand 1.000 1.000 4.216 0.465 
Temporal demand 5.000 5.000 5.626 0.767 
Performance 9.000 7.000 3.765 0.859 
Effort 10.000 6.000 5.350 0.405 
Frustration 2.000 4.000 5.533 0.754 

 

TABLE 2
MEDIAN OF NASA-TLX

Median, SD, and p-value of NASA-TLX for high- and low-complexity tasks.



28   PSJ PROFESSIONAL SAFETY  JANUARY 2026  assp.org

Kar, S., Bhagat, M. & Routray, A. (2010). EEG signal analysis for the 
assessment and quantification of driver’s fatigue. Transportation Re-
search Part F: Traffic Psychology and Behaviour, 13(5), 297-306. https://
doi.org/10.1016/j.trf.2010.06.006

Li, X., Chen, P., Yu, X. & Jiang, N. (2022). Analysis of the relationship be-
tween motor imagery and age-related fatigue for CNN classification of the 
EEG data. Frontiers in Aging Neuroscience, 14, 909571. https://doi.org/qjkk

Li, J., Li, H., Umer, W., Wang, H., Xing, X., Zhao, S. & Hou, J. (2020). 
Identification and classification of construction equipment operators’ 
cognitive fatigue using wearable eye-tracking technology. Automation in 
Construction, 109, 103000. https://doi.org/10.1016/j.autcon.2019.103000

Li, J., Li, H., Wang, H., Umer, W., Fu, H. & Xing, X. (2019). Evaluating 
the impact of mental fatigue on construction equipment operators’ abil-
ity to detect hazards using wearable eye-tracking technology. Automa-
tion in Construction, 105, 102835. https://doi.org/gg53gh

Li, G., Li, B., Wang, G., Zhang, J. & Wang, J. (2017). A new method for 
human cognitive fatigue detection with several EEG channels. Journal of 
Medical and Biological Engineering, 37(2), 240-247. https://doi.org/ 
10.1007/s40846-017-0224-6

Mbto. (n.d.). Smarting S. https://bit.ly/4rWX5JB 
Melo, H.M., Nascimento, L.M. & Takase, E. (2017). Mental fatigue 

and heart rate variability (HRV): The time-on-task effect. Psychology 
and Neuroscience, 10(4), 428-436. https://doi.org/10.1037/pne0000110

Muñoz-de-Escalona, E., Cañas, J.J. & Noriega, P. (2020). Inconsisten-
cies between cognitive fatigue measures under compensatory control 
theories. Psicológica Journal, 41(2), 103-126. https://doi.org/qjkm

National Safety Council (NSC). (2018). Fatigue in safety-critical in-
dustries: Impact, risks and recommendations. https://bit.ly/4rWQoHz

Noghabaei, M., Han, K. & Albert, A. (2021). Feasibility study to iden-
tify brain activity and eye-tracking features for assessing hazard recog-
nition using consumer-grade wearables in an immersive virtual envi-
ronment. Journal of Construction Engineering and Management, 147(9), 
04021104. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002130

Pergher, V., Vanbilsen, N. & Van Hulle, M. (2021). The effect of 
cognitive fatigue and gender on working memory performance during 
repeated practice by young and older adults. Neural Plasticity, 2021(1), 
6612805. https://doi.org/10.1155/2021/6612805

Richman, J.S. & Moorman, J.R. (2000). Physiological time-series 
analysis using approximate entropy and sample entropy. Ameri-
can Journal of Physiology-Heart and Circulatory Physiology, 278(6), 
H2039-H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039

Sharma, R., Pachori, R. & Acharya, U. (2014). Application of entropy 
measures on intrinsic mode functions for the automated identification 
of focal Electroencephalogram signals. Entropy, 17(2), 669-691. https://
doi.org/10.3390/e17020669

Tehrani, B.M., Wang, J. & Truax, D. (2022). Assessment of cognitive 
fatigue using electroencephalography (EEG) and virtual reality (VR) for 

construction fall hazard prevention. Engineering, Construction and Ar-
chitectural Management, 29(9), 3593-3616. https://doi.org/gm6dgq

Tran, Y., Craig, A., Craig, R., Chai, R. & Nguyen, H. (2020). The influ-
ence of cognitive fatigue on brain activity: Evidence from a systematic 
review with meta-analyses. Psychophysiology, 57(5), e13554. https://doi 
.org/10.1111/psyp.13554

Tyas, A.E., Dharma Wibawa, A. & Purnomo, M.H. (2020). Theta, 
Alpha and Beta activity in the occipital based on EEG signals for cogni-
tive fatigue in high school students. In 2020 International Conference on 
Smart Technology and Applications (ICoSTA), 1-7, IEEE. https://doi.org/ 
10.1109/ICoSTA48221.2020.1570614141

Wang, D., Li, H. & Chen, J. (2019). Detecting and measuring con-
struction workers’ vigilance through hybrid kinematic-EEG signals. 
Automation in Construction, 100, 11-23. https://doi.org/qjkn

Wang, J., Wu, Y., Qu, H., & Xu, G. (2014). EEG-based fatigue driving 
detection using correlation dimension. Journal of Vibroengineering, 
16(1), 407-413.

Wascher, E. & Getzmann, S. (2014). Rapid cognitive fatigue amplifies 
age-related attentional deficits. Journal of Psychophysiology, 28(3), 215-
224. https://doi.org/10.1027/0269-8803/a000127

Xing, X., Zhong, B., Luo, H., Rose, T., Li, J. & Antwi-Afari, M. F. 
(2020). Effects of physical fatigue on the induction of cognitive fatigue 
of construction workers: A pilot study based on a neurophysiological ap-
proach. Automation in Construction, 120, 103381. https://doi.org/ 
10.1016/j.autcon.2020.103381

Xu, R., Zhang, C., He, F., Zhao, X., Qi, H., Zhou, P., Zhang, L. & 
Ming, D. (2018). How physical activities affect cognitive fatigue based on 
EEG energy, connectivity and complexity. Frontiers in Neurology, 9, 915. 
https://doi.org/10.3389/fneur.2018.00915

Zhang, Z., Xiang, T., Guo, H., Ma, L., Guan, Z. & Fang, Y. (2023). 
Impact of physical and cognitive fatigue on construction workers’ un-
safe behavior based on physiological measurement. Journal of Safety 
Research, 85, 457-468. https://doi.org/10.1016/j.jsr.2023.04.014

Zhang, H., Wang, J., Geng, X., Li, C. & Wang, S. (2021). Objective 
assessments of cognitive fatigue during a continuous long-term stress 
condition. Frontiers in Human Neuroscience, 15, 733426. https://doi 
.org/10.3389/fnhum.2021.733426

Zhao, C., Zhao, M., Liu, J. & Zheng, C. (2012). Electroencephalogram 
and electrocardiograph assessment of cognitive fatigue in a driving simu-
lator. Accident Analysis and Prevention, 45, 83-90. https://doi.org/fxrbxv

Mikias Gugssa is a Ph.D. candidate and grad-
uate research assistant at the Richard A. Rula 
School of Civil and Environmental Engineering 
at Mississippi State University. He holds an M.Sc. 
and a B.Sc. in Civil Engineering from Addis Ababa 
University, Ethiopia. His research focuses on 
integrating advanced technologies to enhance 
construction safety. 
Mohammad Nafe Assafi is a Ph.D. student at 
the Richard A. Rula School of Civil and Environmen-
tal Engineering at Mississippi State University. He 
holds an M.Sc. in Civil Engineering from Mississippi 
State University and B.Sc. in Building Engineering 
and Construction Management from Khulna Uni-
versity of Engineering and Technology, Bangladesh. 
He is employed as a graduate research assistant 
within the Rula School. His research interests focus 
on safe human-robot interactions in construction 
using artificial intelligence and robotics. 

Jun Wang, Ph.D., is an assistant professor in 
Richard A. Rula School of Civil and Environmental 
Engineering at Mississippi State University. She 
is the director of the Mississippi Transportation 
Research Center. Wang’s research mainly focuses 
on smart construction, human-robot interac-
tion, and the applications of automation and 
artificial intelligence in construction engineering 
and management. Wang received the National 
Science Foundation Faculty Early Career De-
velopment CAREER award in 2024. She holds a 
Ph.D. degree in Civil Engineering from McMaster 
University, Canada, and an M.Sc. and B.Sc. from 
Dalian University of Technology, China. 
Zhujun Pan, Ph.D., is an associate professor 
in the Department of Kinesiology at Mississippi 
State University and codirector of the Cognitive 
Motor Control Laboratory. Her research focuses 
on cognitive motor control, motor function in 

older adults and Parkinson’s disease patients, 
bimanual coordination and transfer of learning, 
and exercise intervention for special populations. 
Pan holds a Ph.D. in Kinesiology from Louisiana  
State University, an M.Sc. in Kinesiology from 
the Capital Institute of Physical Education, and 
a B.Sc. in Electronic Engineering from Southwest 
Jiaotong University, China. 
Jingdao Chen, Ph.D., is an assistant pro-
fessor in the Department of Computer Science 
and Engineering at Mississippi State University. 
Chen’s research focuses on robotics, computer 
vision and machine learning, including con-
struction robotics, disaster relief robotics, dig-
ital twins and Scan-to-BIM. Chen holds a Ph.D. 
in Robotics, an M.Sc. in Computer Science from 
Georgia Institute of Technology, and a B.Sc. in 
Electrical Engineering from Washington Univer-
sity in St. Louis.

Cite this article
Gugssa, M., Assafi, M.N., Wang, J., Pan, Z. & Chen, J. (2026, Jan.). 

Cognitive fatigue and task complexity: Ensuring worker safety in 
construction and engineering. Professional Safety, 71(1), 22-28. 


