ANSI B11.3 – 2022

an American National Standard –

Safety Requirements for Power Press Brakes

B11 Standards, Inc.
POB 690905
Houston, TX 77269, USA

APPROVED: 8 MARCH 2022

by the American National Standards Institute
Board of Standards Review

COPYRIGHT PROTECTED DOCUMENT

Copyright © 2022 by B11 Standards, Inc.
All rights reserved. Printed in the United States of America
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of B11 Standards, Inc.
AMERICAN NATIONAL STANDARD

By approving this American National Standard, the ANSI Board of Standards Review confirms that the requirements for due process, consensus, balance and openness have been met by B11 Standards, Inc., (the ANSI-accredited standards developing organization). American National Standards are developed through a consensus process. Consensus is established when substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward resolution. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While B11 Standards, Inc., administers the process and establishes procedures to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards or guidelines.

American National Standards are promulgated through ANSI for voluntary use; their existence does not in any respect preclude anyone, whether they have approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. However, users, distributors, regulatory bodies, certification agencies and others concerned may apply American National Standards as mandatory requirements in commerce and industry.

Neither B11 Standards, Inc. nor any of the organizations or individuals that assisted in authoring, developing, editing or distributing this standard (B11 Standards, Inc. and such organizations and individuals collectively referred to as the “Contributing Parties”) makes any warranty, either expressed or implied, as to the fitness of merchantability or accuracy of the information contained within this standard. The Contributing Parties disclaim and make no warranty that the information in this document will fulfill any of your particular purposes or needs. The Contributing Parties disclaim liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, application or reliance on this document. The Contributing Parties do not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide, nor does it take any position with respect to the validity of any patent rights asserted in connection with the items which are mentioned in or are the subject of this document. The Contributing Parties disclaim liability for the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

In publishing or making this document available, the Contributing Parties are not undertaking to render professional or other services for or on behalf of any person or entity, nor are the Contributing Parties undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment, or as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. In addition to conforming to the requirements of this standard, the responsible personnel must also make an independent determination as to whether a machine, activity or condition complies with the applicable legal requirements in the relevant jurisdiction(s).

B11 Standards, Inc., has no power, nor does it undertake to police or enforce conformance to the requirements of this document. B11 Standards, Inc., does not certify, test or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of conformance to any health or safety-related information in this document shall not be attributable to B11 Standards, Inc., and is solely the responsibility of the certifier or maker of the statement. The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of an American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the Secretariat (B11 Standards, Inc.,).

NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. You may contact the Secretariat for current status information on this, or other B11 standards.

Published by: B11 Standards, Inc., POB 690905, Houston, TX - USA
Copyright © 2022 by B11 Standards Inc.
All rights reserved. Printed in the United States of America

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.
Table of Contents

FOREWORD ... vii
History .. vii
Effective Date .. viii
Context (how to read/use this document) .. viii
Inquiries .. viii
Development ... viii
INTRODUCTION ... xi

1 Scope .. 15
 1.1 General .. 15
 1.2 Exclusions ... 15

2 Normative references ... 16
 2.1 Informative references ... 17

3 Definitions ... 18

4 Responsibilities .. 24
 4.1 Supplier responsibilities .. 24
 4.2 User responsibilities ... 24
 4.3 Integrator, modifier or rebuilder responsibilities .. 24
 4.4 Personnel responsibilities ... 25

5 Risk assessment process .. 26

6 Design, construction, re-construction, and modification 28
 6.1 General requirements for all press brakes .. 28
 6.1.1 Hazards associated with broken components 28
 6.1.2 Tool fastening provisions .. 28
 6.1.3 Opening of tool space .. 29
 6.1.4 Press brake capacity data plate .. 29
 6.1.5 Pressure rating of components .. 29
 6.1.6 Stored and residual energy .. 29
 6.1.7 Performance of safety function(s) .. 30
 6.1.8 Safe condition monitoring system .. 30
 6.1.9 Presence-Sensing Device Initiation (PSDI) .. 33
 6.2 Electrical controls .. 34
 6.2.1 Disconnect means .. 35
 6.2.2 General requirements for stop functions, circuits and actuators 35
 6.2.3 Motor start actuator .. 39
 6.2.4 Motor starter ... 40
 6.2.5 Top stop control ... 40
 6.2.6 Return (stop-return) control ... 40
 6.2.7 Voltage .. 40
 6.2.8 Grounds ... 41
 6.2.9 External and line interferences ... 41
 6.3 Requirements for mechanical press brakes ... 41
6.3.1 Ram counterbalance systems ... 41
6.3.2 Clutches and brakes .. 41
6.3.3 Cycle control of mechanically actuated or air operated press brakes .. 42
6.3.4 Mode control ... 44
6.3.5 Actuating means ... 50
6.3.6 Motorized ram adjustment .. 51
6.4 Requirements for hydraulic press brakes 52
 6.4.1 Return (stop-return) control ... 52
 6.4.2 Ram counterbalance system .. 52
 6.4.3 Foot pedal (mechanical) .. 52
 6.4.4 Unintended actuation by foot treadle 53
 6.4.5 Mode control for hydraulic press brakes 53
 6.4.6 Actuating means ... 59
 6.4.7 Hydraulic components and circuits 60
6.5 Requirements for pneumatic press brakes 63
 6.5.1 Return (stop-return) control ... 63
 6.5.2 Ram counterbalance systems ... 63
 6.5.3 Air-controlling equipment .. 63
 6.5.4 Actuating means ... 63
 6.5.5 Pneumatic components and circuits 64

7 Layout, installation, testing and start-up 66
 7.1 General .. 66
 7.2 Layout .. 66
 7.3 Installation .. 67
 7.3.1 Floor loading ... 67
 7.3.2 Anchoring ... 67
 7.3.3 Electrical requirements for installation 67
 7.3.4 Control of hazardous energy .. 67
 7.3.5 Lighting .. 68
 7.4 Testing and start-up ... 68

8 Risk reduction ... 69
 8.1 Hazards assoc. with press brake production systems other than point-of-operation hazards 69
 8.2 Hazards associated with falling or broken components 70
 8.3 Performance of the safety function(s) 70
 8.4 Perimeter risk reduction measures 70
 8.5 Hazards associated with point of operation 71
 8.5.1 Risk reduction measures .. 71
 8.6 Engineering control – guards ... 72
 8.6.1 Design and construction ... 72
 8.6.2 Installation and operation .. 74
 8.7 Point of operation engineering control – devices 76
 8.7.1 Movable barrier devices .. 77
 8.7.2 Presence-sensing device ... 79
 8.7.3 Pull-back device ... 83
 8.7.4 Hold-out (restraint) device .. 84
 8.7.5 Two-hand control device .. 84
 8.7.6 Single control devices ... 86
 8.7.7 Close proximity point of operation AOPDs 86
 8.8 Slow speed risk reduction .. 90
 8.9 Safe-distance risk reduction .. 91
8.10 Auxiliary safety aids .. 92
8.11 Span of control ... 93
 8.11.1 Layout analysis ... 93
 8.11.2 Level of safety performance 94
 8.11.3 Identification .. 95
9 Set up, operation and maintenance .. 95
 9.1 General .. 95
 9.2 Machine set-up procedures ... 95
 9.2.1 Die set-up procedures ... 96
 9.3 Operation .. 100
 9.3.1 Observations .. 100
 9.4 Maintenance ... 102
 9.4.1 General ... 102
 9.4.2 Maintenance inspections .. 103
 9.5 Supervision .. 104
 9.6 Control of hazardous energy ... 105
 9.7 Initiation of normal operations ... 105
 9.8 Safety signs ... 105
 9.9 Personal protective equipment (PPE) 105
10 Training ... 106
 10.1 General .. 106
 10.2 Training elements .. 106
 10.2.1 Training programs .. 107
 10.3 Operator training .. 108
 10.4 Maintenance personnel training 108
 10.5 Supervisor training .. 109
 10.6 Retraining ... 109
11 Decommissioning process .. 109
 11.1 Supplier responsibilities .. 109
 11.2 User responsibilities .. 109
 11.3 Modifier responsibilities .. 110
 11.4 Decommissioning task ... 110
 11.5 Control of hazardous energy ... 110
 11.6 Layout .. 111
12 Additional requirements for PSDI operation 111
 12.1 General .. 111
 12.2 Whole body access .. 111
 12.3 Multiple operators .. 111
 12.4 Presence-sensing device used for PSDI 111
 12.5 Supplemental engineering controls 112
 12.6 Hand tools .. 112
 12.7 Inspection and maintenance ... 112
 12.8 Operator training ... 113
Annex A – Figures... 114
Annex B – Task / Hazard Identification .. 125
Annex C – Performance of the safety function(s)... 127
Annex E – Checklist... 129
ANNEX F – Example Die Setting Procedure ... 130
Annex G – Automatic Backgage Hazards... 134
Annex H – General guidelines for operator training... 135
FOREWORD
(This Foreword is not a normative part of American National Standard B11.3-2022)

The primary objective of this standard is to eliminate, control or reduce hazards to individuals associated with power press brakes by establishing requirements for the design, construction, operation and maintenance of these machines. To accomplish this objective, responsibilities have been assigned to the various entities such as the supplier (manufacturer), modifier, rebuilder, integrator, the user, and individuals in the working environment.

The words "safe" and "safety" are not absolutes. Safety is an attitude. While the goal of this standard is to eliminate injuries, it is recognized that risk factors cannot be practically reduced to zero in any human activity. This standard is not intended to replace good judgment and personal responsibility. Operator skill, attitude, training, job monotony, fatigue and experience are safety factors that must be considered by the user.

Power press brake technology is continuously evolving. This standard reflects the most commonly used and time-tested state of the art at the time of its approval. The inclusion or omission of language relative to any evolving technology, either in the requirements or explanatory area of this standard, in no way infers acceptance or rejection of such technologies.

History
The B11 standards for machine safety were first approved beginning with safety requirements for power presses in 1922. Since that time, safety requirements for a variety of machines have been developed and continually updated and revised to become a series of some three dozen B11 standards and technical reports. Maintaining these documents with consistent language proved a significant challenge. In 2008 ANSI B11-GSR (General Safety Requirements), was published with the long-term objective to reorganize the B11 series of standards by gathering the requirements common to many or most of the B11 standards into a single document while retaining the machinery specific requirements in the machine-specific standards. It was revised, re-designated and published as ANSI B11.0 in 2010. This ANSI B11.3 type-C standard is intended to be used with ANSI B11.0 type-A and ANSI B11.19 type-B standards. The requirements of all three standards must be met as applicable to a particular machine.

The original ANSI B11.3 standard was approved in 1973 and revised in 1982, in 2002 and again in 2012. In the 2002 document, powered folding machines were included in the scope of the standard because they were predominantly similar to press brakes in that they are metal bending machines and the fact they were not covered by any other standard. During the 2012 revision process, the subcommittee determined that powered folding machines have evolved into multi-axis machines that process metal in numerous ways, many of which are unlike a press brake. Additionally, there was then a type-A standard, ANSI B11.0, which can be used in conjunction with the type-B standard ANSI B11.19 to provide guidance for the safe use of machines in general. It is for these reasons that the subcommittee decided to exclude powered folding machines in the scope of the 2012 edition of ANSI B11.3.

New topics included in the 2012 revision of ANSI B11.3 were the “close proximity point of operation AOPD” engineering controls – devices, a risk reduction measure called “Safe Speed” and a new clause 10 and Annex I on training was added.

The 2022 edition of ANSI B11.3 is more of a “cosmetic” than “substantively technical” revision of the previous (2012) edition; while the entire document has been scrutinized to ensure it is up-to-date with current technology and state-of-the-art, the bulk of changes fall within in the category of harmonization and alignment with concepts contained in the latest editions of the type-A standard ANSI B11.0 (Safety of Machinery) and the type-B standard ANSI B11.19 (Risk Reduction Measures). These efforts include terminology changes, a listing of which terms affected can be found at the end of clause 3.
Effective Date

The following information on effective dates is informative guidance only, and not a normative part of this standard. This Subcommittee recognizes that some period of time after the approval date on the title page of this document is necessary for suppliers and users to develop new designs or modify existing designs or manufacturing processes in order to incorporate the new or revised requirements of this standard into their product development or production system.

This Subcommittee recommends that suppliers complete and implement design changes for new machines and machinery systems within 30 months of the approval date of this standard.

The Subcommittee recommends that users evaluating whether existing machinery and machinery systems implement this edition within 30 months of the approval date of this standard using generally recognized risk assessment methods. If the risk assessment shows that modification(s) is necessary, refer to the requirements of this standard or the machine-specific “base” safety standard to implement risk reduction measures (protective measures) for appropriate risk reduction.

Context (how to read/use this document)

The writers of this document understand that the reader/user of this American National Standard is unlikely to read it cover-to-cover but instead (for example), might use the Table of Contents as a sort of ‘roadmap’ to find a specific topic and then review only that topic. However, the reader/user of this standard is informed that the elements (clauses, subclauses, etc.) of these documents are sequenced and often interrelated in such a way as to state requirements that may very well be dependent on text in a section(s) that precedes the actual requirement. It therefore becomes vital and important for the reader/user of this standard to ensure they understand the depth, range and especially the context of the section or topic in which the actual requirement appears.

Inquiries

Suggestions for improvement to the content of this standard are welcomed. Similarly, any inquiries with respect to the application of the substantive requirements of this standard are to be sent to B11 Standards, Inc., PO Box 690905, Houston, Texas 77269-0905, USA. Attention: B11 Secretariat.

Development

This current 2022 standard was revised by the B11.3 Subcommittee, processed and administered by the Secretariat, and approved by the B11 Standards Development Committee (B11SDC) for submittal to the ANSI Board of Standards Review for approval as an American National Standard. B11 SDC approval of this standard does not necessarily imply that all committee members voted for its approval. At the time this standard was approved as an American National Standard, the ANSI B11 SDC was composed of the following member organizations:

Alan Metelsky, FS, Eng., Chair / Anne Mathias, PE, Vice-Chair / David Felinski, Secretary

Organizations Represented

- Aluminum Extruders Council
- American Society of Safety Professionals
- Association for Advancing Automation
- Association For Manufacturing Technology
- Assoc. for Packaging & Processing Technology
- The Boeing Company
- Bridgestone
- Canadian Standards Association
- Deere & Co.
- Euchner
- Exponent
- FDR Safety
- Fortress Safety

Delegate

- Melvin Mitchell, CSP
- Ted Sberna, Sr.
- Carole Franklin
- Russell Bensman
- Bruce Main, PE, CSP
- Rhiannon McPherson
- Kenji Furukawa, FS Eng
- Andrea Holbeche, P.Eng.
- Tony Beeth
- Chris Gerges
- Stephen Andrew, PE
- Michael Taubitz
- Jenny Tuertscher, B11 LMSS

Name of Representative

- Bradley Wyatt, CSP
- Anne Mathias, PE
- Jeff Fryman
- Alan Metelsky, FS Eng
- Tom Egan
- Mark Ellingson, Stephen Thomas
- Joey Hinson, FS Eng
- Walter Veugen
- Scott Winter
- Ron Yemmans
- Joe Wolfsberger, Luke Contos
- Malcolm Sharp

This document is copyright protected and may not be reproduced or distributed to any other party.
Since the last revision of B11.3, the format/style and even some content elements within the ANSI B11 series have evolved. This current revision has maintained many of those same safety requirements and in several instances, updated requirements while updating the format of the standard to the modern B11 standards structure. Additionally, the ANSI B11 series of standards now incorporates the integration of a stratified approach using "types" of standards (i.e., type-A, type-B and type-C standards – see a more detailed explanation of this approach in the Introduction). ANSI B11.3 is considered a type-C standard and is intended to be used (at a minimum) in conjunction with the type-A ANSI B11.0 and type-B ANSI B11.19 (see the B11 documents list on page xi).

The Subcommittee which developed the standardized elements to the B11 series as well as updating this current edition of B11.3 had the following members:

Jim Kirton, Co-Chair, Kirton Industrial Equipment LLC
Chris Soranno, Co-Chair, FS Exp, SICK, Inc.
Mike Douglas, General Motors
Chris Felinski, Secretary, B11 Standards, Inc.
David Felinski, Secretariat, B11 Standards, Inc.
Heinz Knackstedt, Machine Control Safety Training
Bruce Main, PE, CSP, design safety engineering, inc.
Ted Sberna, Sr., White Horse Safety
Mike Taubitz, FDR Safety

The Subcommittee which revised the 2012 standard, had the following members:

Name
James V. Kirton, Co-Chairman
Christopher Soranno, Co-Chairman
David A. Felinski, Secretary
Rob Appleyard
Doug Boyer
Roy Brown
Dennis Cloutier
Howard DeWees
Lutz Fiessler
Rob Hamilton
Michael Hattick
John Kemp
Chris King
Heinz Knackstedt
Sam Mamula
Scott Otens
Ted Sberna
Jim Van Kessel
Walter Veugen
Scott Whittington
Company
Kirton Industrial Equipment, LLC
Omron STI
B11 Standards, Inc.
LazerSafe, Pty.
Advanced Manufacturing Solutions
SMACNA
SICK, Inc.
Fiessler Elektronik GmbH
Trumpf, Inc.
Paragon Industrial Controls
Bystronic
CLK 365 Enterprises, LLC
C&E Sales
Amada America
Applied Engineering Concepts
JVK Industrial Automation, Inc.
Veugen Integrated Technologies, Ltd.
Cincinnati Incorporated

This document is copyright protected and may not be reproduced or distributed to any other party.
Explanation of the format, and ANSI B11 conventions

This standard uses a two-column format to provide supporting information for requirements. The text in the left column is confined to “Standards Requirements” and is so captioned. The right-hand column, captioned “Explanatory Information” contains information that the writing Subcommittee believed would help to clarify the requirements contained in the standard. This column should not be construed as being a part of the requirements of this American National Standard. Operating rules (safe practices) are not included in either column of this standard unless they are of such nature as to be vital safety requirements, equal in weight to other requirements, or guides to assist in compliance with the standard.

As in all American National Standards, the term “SHALL” denotes a requirement that is to be strictly followed in order to conform to this standard; no deviation is permitted. The term “SHOULD” denotes a recommendation, a practice or condition among several alternatives, or a preferred method or course of action.

Generally speaking, the term “CAN” denotes a possibility, ability or capability, whether physical or causal, and the term “MAY” denotes a permissible course of action within the limits of the standard, however, the terms can often be used interchangeably.

B11 conventions:
Normative inter-document or intra-document references are denoted by “See #.##.” Informative inter-document or intra-document references are denoted by “See also, #.##.”

The use of “hard” conversion between metric and English units does not imply a tolerance requirement.

Operating rules (safe practices) are not included in either column of this standard unless they are of such nature as to be vital safety requirements, equal in weight to other requirements, or guides to assist in conformance with the standard.

The ANSI B11 standards generally use the term “OR” as an inclusive disjunction, meaning one or the other or both, but on occasion will use the term “and/or” to emphasize the fact that both are fully intended in cases where the Subcommittee believed it was imperative to make that clear.

A distinction between the terms “individual” and “personnel” is drawn. Individual includes personnel (employees, subcontractors, consultants, or other contract workers under the indirect control of the supplier or user) but also encompasses persons who are not under the direct or indirect
INTRODUCTION
The main purpose of every machine tool is to process materials. Inadvertent interference with, or accidental misdirection of the released energy during production, maintenance, commissioning and de-commissioning can result in injury.

The purpose of the ANSI B11 series of machinery safety standards is to devise and propose ways to eliminate or minimize risks of the potential hazards associated with the required tasks. This can be accomplished either by an appropriate machine design or by restricting personnel or other individuals’ access to hazard zones, and by devising work procedures to minimize personnel exposure to hazardous situations. This is the essence of the ANSI B11 series of safety standards. This standard recognizes that zero risk does not exist and cannot be attained. However, a good faith approach to risk assessment and risk reduction should achieve an acceptable risk level.

Organization and Application of B11 Documents
The B11 standards and technical reports can be associated with the ISO “type A-B-C” structure as described immediately below, and as shown in Figure 1.

- **Type-A standards** (basis standards) give basic concepts, principles for design, and general aspects that can be applied to machinery;
- **Type-B standards** (generic safety standards) deal with one or more safety aspects or one or more types of engineering controls that can be used across a wide range of machinery:
- **Type-C standards** (machinery safety standards) deal with detailed safety requirements for a particular machine or group of machines.

The B11.0 standard on general safety requirements common to ANSI B11 machines is primarily a “type-A” standard in that it applies to a broad array of machines and contains very general requirements. However, in many areas it also contains very specific requirements. B11.19, B11.20, B11.21, B11.25, B11.26, as well as the entire B11 series of Technical Reports are all typical “Type-B” documents addressing general safety elements that can be used across a wide range of machinery (such as B11.19 and B11.26) or as a standard when combining machines (B11.20). The B11 series of Technical Reports are informative documents that may be generally applied to many different machines, and as such would fall into the “type-B” category. The machine-specific (“type-C”) B11 standards contain detailed safety requirements for a particular machine or group of machines (such as this standard). The type-A B11.0 and the type-C (machine-specific) B11 standards are intended to be used concurrently by the supplier and user of machines. When a type-C standard deviates from one or more provisions dealt with by this standard or by a type-B standard, the type-C standard requirement generally takes precedence. Any deviation in conforming to a requirement of any standard should be carefully evaluated and based on a documented risk assessment.

![Figure 1 — Organization of the B11 Series of Documents](image-url)
An overview of each clause of this standard as shown in Figure 2 is provided below.

1) **Scope** – Provides the boundaries or limits of the standard (i.e., what is/is not included).
2) **Normative references** – Other standards which in whole or in part provide additional requirements when referenced in the normative text (i.e., left-hand column of clauses 4 – 9) of this standard.
3) **Definitions** – Terms used in this standard, together with their definitions (terms used in the same context as are generally understood and commonly used in everyday English are not defined).
4) **Responsibilities** – The general responsibilities of the supplier (builder), user, modifier and the user personnel are listed in clause 4 together with the remaining clauses for which they have primary responsibility.
5) **Risk assessment process** – Clause 5 presents the general approach to risk assessment (see B11.0 for further explanation of hazard/task identification and risk assessment/risk reduction).
6) **Design and construction** – It is assumed that the supplier of new equipment to the user will be responsible for the requirements of clause 6, understanding that the user may add to or modify these requirements through the purchase agreement. For existing machinery, the user is generally responsible for the requirements of clause 6.
7) **Layout, installation, testing and start-up** – Although the requirements of clause 7 are predominantly the responsibility of the user, the supplier will normally provide assistance either directly (providing personnel) or indirectly (instruction materials).
8) **Risk reduction measures** – This is normally a shared responsibility but often, either the supplier or the user will provide and/or meet the requirements of clause 8.
9) **Set-up, operation and maintenance** – The user is normally responsible for the requirements of clause 9 with possible assistance from the supplier for training.
10) **Training** – The user is normally responsible for the requirements of clause 10 with possible assistance from the supplier for materials or the training itself.
11) **Decommissioning** – This is primarily a user responsibility, however, the supplier shares responsibility for taking this aspect into consideration during the design.
12) **Presence-sensing device initiation** – This clause contains additional requirements (beyond those of 6.1.9) for the use of PSDI.

Notes for Column Headings in Figure 2:
SUPPLIER: The early stages of a project present the greatest opportunity to determine project requirements and to anticipate and eliminate hazards and hazardous situations.
MODIFIER: The entity (OEM, Supplier, or the expert) in that discipline responsible for creating or modifying the system, machinery or equipment, should have all relevant design standards documentation. The entity should begin by working with the end user to list all tasks to achieve an appropriate comprehensive task list base of the “context of use” for the system, machine or equipment.
USER: The company representatives (can be from many disciplines) where the system, machinery or equipment will reside during its productive life. They should engage in participating or reviewing the risk assessment and what will be necessary for a final safety buy-off at the final location.
PERSONNEL: The group “at risk” from any hazards or hazardous situation presented by the system, machinery, or equipment while performing their tasks to achieve the company’s desired productive life. This would include at a minimum, operators, maintenance personnel for both planned and unplanned maintenance, housekeeping and safety representatives. This group would evaluate the engineering controls, complementary measures and administrative controls (see ANSI B11.19).
Figure 2 provides an overview of this standard and in particular the responsibilities of and requirements for the supplier, modifier, user, and the user personnel. Numbers in parentheses denote the particular clause or subclause of the standard.

Figure 2 – Typical clause layout of B11 base standards showing the various responsibilities
As of the date of approval of this standard, the ANSI B11 series of American National Standards and Technical Reports on machinery safety consisted of the following documents shown in the list below. The user should check a licensed reseller such as ANSI (www.ansi.org) for the current versions of any of these documents. All archival / historical versions of the documents are available at www.b11standards.org.

List of the ANSI B11 Series of Safety Standards and Technical Reports

<table>
<thead>
<tr>
<th>#</th>
<th>SHORT TITLE / TOPIC</th>
<th>YEAR</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B11.0</td>
<td>Safety of Machinery</td>
<td>2020</td>
<td>A</td>
</tr>
<tr>
<td>B11.1</td>
<td>Mechanical Power Presses</td>
<td>2009 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.2</td>
<td>Hydraulic & Pneumatic Power Presses</td>
<td>2013</td>
<td>C</td>
</tr>
<tr>
<td>B11.3</td>
<td>Power Press Brakes</td>
<td>2022</td>
<td>C</td>
</tr>
<tr>
<td>B11.4</td>
<td>Shears</td>
<td>2003 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.5</td>
<td>Ironworkers</td>
<td>1988 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.6</td>
<td>Manual Turning Machines w/ or without Auto Control</td>
<td>2001 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.7</td>
<td>Cold Headers and Cold Formers</td>
<td>2020</td>
<td>C</td>
</tr>
<tr>
<td>B11.8</td>
<td>Manual Milling, Drilling, & Boring Machines</td>
<td>2022</td>
<td>C</td>
</tr>
<tr>
<td>B11.9</td>
<td>Grinding Machines</td>
<td>2010 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.10</td>
<td>Sawing Machines</td>
<td>2003 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.11</td>
<td>Gear and Spline Cutting Machines</td>
<td>2001 (R12)</td>
<td>C</td>
</tr>
<tr>
<td>B11.12</td>
<td>Roll Forming and Roll Bending Machines</td>
<td>2005 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.13</td>
<td>Single & Multiple-Spindle Automatic Bar and Chucking Machines</td>
<td>2020</td>
<td>C</td>
</tr>
<tr>
<td>B11.15</td>
<td>Bar, Pipe, Tube and Shape Bending Machines</td>
<td>2022</td>
<td>C</td>
</tr>
<tr>
<td>B11.16</td>
<td>Powder / Metal Compacting Presses</td>
<td>2014 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.17</td>
<td>Horizontal Hydraulic Extrusion Presses</td>
<td>2004 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.18</td>
<td>Machines Processing or Slitting Coiled or Non-Coiled Metal</td>
<td>2006 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.19</td>
<td>Performance Requirements for Risk Reduction Measures (Safeguarding)</td>
<td>2019</td>
<td>B</td>
</tr>
<tr>
<td>B11.20</td>
<td>Integration of Machinery into a System</td>
<td>2017</td>
<td>B</td>
</tr>
<tr>
<td>B11.21</td>
<td>Machine Tools Using Lasers for Processing Materials</td>
<td>2006 (R20)</td>
<td>B</td>
</tr>
<tr>
<td>B11.22</td>
<td>Turning Centers and Automatic Numerically Controlled Turning Machines</td>
<td>2002 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.23</td>
<td>Machining Centers & CNC Milling, Drilling & Boring Machines</td>
<td>2002 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.24</td>
<td>Transfer Machines</td>
<td>2002 (R20)</td>
<td>C</td>
</tr>
<tr>
<td>B11.25</td>
<td>Large Machines</td>
<td>2015 (R20)</td>
<td>B</td>
</tr>
<tr>
<td>B11.26</td>
<td>Functional Safety for Equipment / Machine Control Systems</td>
<td>2018</td>
<td>B</td>
</tr>
<tr>
<td>B11.27</td>
<td>Electro-Discharge Machines</td>
<td>2020</td>
<td>C</td>
</tr>
<tr>
<td>B11.TR1</td>
<td>Ergonomics</td>
<td>2016</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR2</td>
<td>Metal Working Fluids</td>
<td>1997 (R16)</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR4</td>
<td>Selection of Programmable Electronic Systems (PES/PLC)</td>
<td>2004 (R15)</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR5</td>
<td>Noise Measurement</td>
<td>2006</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR7</td>
<td>Integration of Lean and Safety</td>
<td>2007 (R17)</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR8</td>
<td>Guide to Inspection of Risk Reduction Measures</td>
<td>2022</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR9</td>
<td>Cybersecurity</td>
<td>2019</td>
<td>B</td>
</tr>
<tr>
<td>B11.TR10</td>
<td>Guidance on Artificial Intelligence into Machinery Safety Applications</td>
<td>2020</td>
<td>B</td>
</tr>
<tr>
<td>ANSI/ISO 12100</td>
<td>Safety of machinery (identical adoption of ISO 12100-2010)</td>
<td>2012</td>
<td>A</td>
</tr>
</tbody>
</table>
1 Scope

1.1 General
The requirements of this standard apply to those machines classified as power press brakes (hereinafter referred to simply as “press brakes”), which are designed and constructed for the specific purpose of bending material.

Where used in this standard, the terms machine or machine system refer to the press brake or press brake production system, respectively.

1.2 Exclusions
Excluded from the requirements of this standard are the following:

- Manual apron brakes;
- Folding machines;
- Hand brakes;
- Hydraulic or pneumatic power presses;
- An apron brake uses a clamping bar and several removable blocks which may be removed and rearranged to permit bending of restricted areas of a piece of sheet material or of already partially formed pieces. These machines are also called 'box-and-pan brake.'
- A folding machine typically uses a clamping beam and a folding beam to fold the workpiece. These machines are also called a ‘powered folding machine’ or ‘bending brake.’
- A hand brake bends material by using a hinged clamping bar to hold the metal down against the bed. A hinged bending "leaf" is manually lifted to fold the metal around the fulcrum point of the clamping bar to the desired angle. These machines are also called ‘leaf brake.’
- A hydraulically or pneumatically powered machine which transmits force using fluid power (hydraulic or pneumatic) to
STANDARD REQUIREMENTS

- Mechanical power presses;
- Manual tangent benders;
- Other similar types of metal-bending machines.

EXPLANATORY INFORMATION

cut, form, or assemble metal or other materials by means of tools or dies attached to or operated by plungers or slides. See also ANSI B11.2.

- A mechanically powered machine which transmits force mechanically to cut, form, or assemble metal or other materials by means of tools or dies attached to or operated by slides. See also ANSI B11.1.

- A tangent bender is designed to wing-form or die-form flanges while holding the part or panel in the horizontal flat panel position. They can be used as a primary forming unit or to operate in conjunction with a rollforming system to endform the leading and trailing ends of a part.

2 Normative references

The following normative documents contain provisions that, through reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements subject to this American National Standard should apply the most recent editions of the normative documents listed below. This standard is intended to be used in conjunction with the following American National Standards:

ANSI B11.0 – 2020 Safety of machinery

NFPA 70 – 2020, The National Electrical Code

NFPA 70E – 2021, Standard for Electrical Safety in the Workplace

E2 Informative references