ANSI B11.9 (R2020)

American National Standard

Safety Requirements for Grinding Machines

ANSI-Accredited Standards Developer and Secretariat:

B11 Standards, Inc.
POB 690905
Houston, TX 77269, USA

APPROVED: 17 November 2001
REAFFIRMED: 8 May 2020
by the American National Standards Institute
Board of Standards Review

COPYRIGHT PROTECTED DOCUMENT
Copyright © 2020 by B11 Standards, Inc.
All rights reserved. Printed in the United States of America
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of B11 Standards, Inc.
AMERICAN NATIONAL STANDARDS
By approving this American National Standard, the ANSI Board of Standards Review confirms that the requirements for due process, consensus, balance and openness have been met by B11 Standards, Inc., (the ANSI-accredited standards developing organization).

American National Standards are developed through a consensus process. Consensus is established when substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward resolution. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While B11 Standards, Inc., administers the process and establishes procedures to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards or guidelines.

American National Standards are promulgated through ANSI for voluntary use; their existence does not in any respect preclude anyone, whether they have approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. However, users, distributors, regulatory bodies, certification agencies and others concerned may apply American National Standards as mandatory requirements in commerce and industry.

The American National Standards institute does not develop standards and will in no circumstances give an interpretation of an American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the Secretariat (B11 Standards, Inc.).

B11 Standards, Inc., MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED AS TO THE FITNESS OF MERCHANTABILITY OR ACCURACY OF THE INFORMATION CONTAINED WITHIN THIS STANDARD, AND DISCLAIMS AND MAKES NO WARRANTY THAT THE INFORMATION IN THIS DOCUMENT WILL FULFILL ANY OF YOUR PARTICULAR PURPOSES OR NEEDS. B11 Standards, Inc., disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, application or reliance on this document. B11 Standards, Inc., does not undertake to guarantee the performance of any individual supplier or seller's products or services by virtue of this standard or guide, nor does it take any position with respect to the validity of any patent rights asserted in connection with the items which are mentioned in or are the subject of this document, and B11 Standards, Inc., disclaims liability for the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

In publishing or making this document available, B11 Standards, Inc., is not undertaking to render professional or other services for or on behalf of any person or entity, nor is B11 Standards, Inc., undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment, or as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

B11 Standards, Inc., has no power, nor does it undertake to police or enforce conformance to the requirements of this document. B11 Standards, Inc., does not certify, test or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of conformance to any health or safety-related information in this document shall not be attributable to B11 Standards, Inc., and is solely the responsibility of the certifier or maker of the statement.

NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. You may contact the Secretariat for current status information on this, or other B11 standards. Individuals interested in obtaining up-to-date information on standards can access this information at http://www.nssn.org (or by contacting ANSI). NSSN - A National Resource for Global Standards, provides a central point to search for standards information from worldwide sources and can connect those who seek standards to those who supply them.

Published by: B11 Standards, Inc., POB 690905, Houston, TX 77269, USA
Copyright © 2020 by B11 Standards Inc.
All rights reserved. Printed in the United States of America

© B11 Standards, Inc.
Table of Contents

FOREWORD..v

Introduction..viii

1 Scope..1

1.1 Included machines...1

1.1.1 External cylindrical grinding machine ...1

1.1.2 Centerless external cylindrical grinding ..1

1.1.3 Surface grinding machine – peripheral grinding, reciprocating table, (horizontal spindle)...1

1.1.4 Surface grinding machine – peripheral grinding, rotary table (horizontal spindle; table has a vertical axis of rotation) ..2

1.1.5 Surface grinding machine – face grinding, reciprocating table (vertical spindle)........3

1.1.6 Surface grinding machine – face grinding, rotary table (vertical spindle; table has a vertical axis of rotation) ..3

1.1.7 Surface grinding – face grinding, Double disc surface grinding machine (includes either horizontal or vertical spindle configurations)3

1.1.8 Tool & cutter grinding machine – peripheral and face grinding (includes multiple horizontal spindle configurations) ...3

1.1.9 Cutting-off machine (guillotine type) ..4

1.1.10 Cutting-off machine (chop-saw type) ...4

1.1.11 Cutting-off machine (workpiece translation type) ..4

1.1.12 Bench, pedestal or floorstand grinding machine – peripheral grinding...................4

1.1.13 Pedestal grinding machine – face grinding (horizontal spindle)5

1.1.14 Swing frame grinding machine – peripheral grinding/cutting-off5

1.1.15 Automatic billet grinding machine – surface grinding (high pressure)....................5

1.2 Excluded machines...6

2 References...6

2.1 Normative references ...6

2.2 Informative references ...7

3 Definitions..8

4 Responsibility...11

4.1 Supplier responsibilities ...11

4.2 User responsibilities ..11

4.3 Personnel responsibilities ..11

5 Risk assessment process...12

6 Design and construction ...14

6.1 General requirements...14

6.1.1 Hazards associated with moving parts (other than point of operation hazards)14

6.1.2 Hazards associated with broken or falling components ..14

6.1.3 Stored energy ..14

6.1.4 Exhaust provision ..14

6.1.5 Flanges ..15

6.1.6 Offhand grinding machine work rests ...15

6.1.7 Limiting abrasive product speed ..15

6.1.8 Direction of machine spindle thread ..15

6.1.9 Length of machine spindle thread ..16
6.10 Size of spindle or mount ... 16
6.11 Directional arrows .. 16
6.12 Work driving and holding equipment .. 16
6.13 Contact with high-temperature components 17
6.2 Electrical requirements ... 17
 6.2.1 Power .. 17
 6.2.2 Disconnect .. 17
 6.2.3 Emergency stop ... 17
 6.2.4 Voltage and grounds ... 17
 6.2.5 Component failure ... 17
6.3 Operating control ... 18
 6.3.1 General construction ... 18
 6.3.2 Identification ... 18
 6.3.3 Component location ... 18
 6.3.4 Operating controls ... 18
 6.3.5 Direction of operation of controls ... 20
 6.3.6 Hydraulic and pneumatic components 21
6.4 Abraives product mounting .. 21
 6.4.1 General requirements for flanges .. 21
 6.4.2 General requirements for faceplates 22
 6.4.3 Run-out for collets .. 22
6.5 Abraives product speeds ... 22

7 Layout, installation, testing and start-up for the grinding system 23
 7.1 General ... 23
 7.2 Layout 23 .. 23
 7.2.1 Production operations .. 23
 7.2.2 Set-up and maintenance .. 23
 7.3 Installation .. 23
 7.3.1 Foundation .. 23
 7.3.2 Lifting of machine components .. 23
 7.3.3 Anchoring .. 24
 7.4 Lockout / tagout ... 24
 7.4.1 Means .. 24
 7.4.2 Procedure .. 24
 7.4.3 Training .. 24
 7.4.4 Supervision .. 24
 7.5 Lighting ... 24
 7.6 Testing and start-up ... 24
 7.6.1 Procedures .. 24
 7.6.2 Assigned personnel ... 24
 7.6.3 Safeguarding .. 24
 7.7 Speed check of machines – user’s responsibility 24

8 Safeguarding .. 25
 8.1 Hazards associated with grinding machine operation, other than at the point of operation .. 26
 8.1.1 Hazards to personnel associated with power transmission 26
 8.1.2 Hazards to personnel associated with moving parts (exclusive of power transmission components) 26
8.1.3 Hazards to personnel associated with flying particles and sparks originating from the point of operation ... 27
8.1.4 Hazards to personnel associated with unintended operation of grinding machines ... 27
8.1.5 Hazards to personnel associated with the containment of fluids such as coolant, lubricant, and hydraulic fluid and compressed gas. ... 27
8.2 Hazards at the point of operation ... 28
8.3 Abrasive product safeguarding ... 28
 8.3.1 General requirements .. 28
 8.3.2 Abrasive product guard exposure angles .. 28
 8.3.3 Abrasive product guards ... 33
 8.3.4 Material requirements and minimum dimensions .. 34
 8.3.5 Abrasive product guards with removable side covers ... 36
 8.3.6 Band-type guards – general specifications .. 37
9 Operation, maintenance and training ... 37
 9.1 Operation and maintenance .. 37
 9.1.1 Use of abrasive products — user’s responsibility .. 38
 9.1.2 General maintenance ... 38
 9.1.3 Arbor size ... 38
 9.1.4 Bushing ... 38
 9.1.5 Surface condition ... 38
 9.1.6 Machine face plate .. 38
 9.1.7 Tightening of the mounting nut ... 40
 9.1.8 Abrasive product guards .. 41
 9.1.9 Maintenance .. 41
 9.2 Training .. 41
Annex A: Abrasive product guards, work zone enclosures and their combinations on stationary grinding machines ... 1
FOREWORD
This Foreword is informative and not part of the requirements of American National Standard B11.9-2010.

The primary objective of this standard is to eliminate, control or reduce hazards to individuals associated with grinding machines by establishing requirements for the design, construction, installation, commissioning, operation, maintenance and decommissioning of these machines. To accomplish this objective, responsibilities have been assigned to the supplier (e.g., supplier, modifier, distributor, rebuilder and integrator), the user, and individuals in the working environment.

The words "safe" and "safety" are not absolutes. An element of safety is attitude. While the objective of this standard is to eliminate, control, or reduce hazards, this standard recognizes that hazards cannot be practically reduced to zero in any human activity. This standard is not intended to replace good judgment, proper training, and personal responsibility. Operator skill, job monotony, fatigue, and experience are safety factors that should be considered by the user.

The original B11.9 Standard was approved in 1975, and has simply been reaffirmed periodically since then. This current standard began revision in 2005, closely collaborating with the ANSI B7.1 Committee. A memorandum of understanding was reached between the two separate standards development committees that going forward, this B11.9 standard would address the safety requirements of the grinding machine only, and B7.1 would address the safety requirements of the abrasive product only (with the largest single area of overlap being the flange, mostly addressed in B7.1).

Technology for grinding machines is continuously evolving. This standard reflects the most commonly used and time-tested state of the art at the time of its approval. The inclusion or omission of language relative to any evolving technology, either in the requirements or explanatory area of this standard, in no way infers acceptance or rejection of such technologies.

This standard was processed and submitted for ANSI approval by the B11 Accredited Standards Committee on safety standards for machine tools. Committee approval of this standard does not necessarily imply that all committee members voted for its approval. At the time this document was approved as an American National Standard, the ANSI B11 Accredited Standards Committee was composed of the following member organizations:

Inquiries with respect to the application of the substantive requirements of this standard and suggestions for its improvement are welcomed and are to be sent to B11 Standards, Inc., POB 690905, Houston, TX 77269. Attention: B11 Secretariat.

Effective Date
The following is informative guidance only, and not a normative part of this standard. This Subcommittee recognizes that some period of time after the approval date on the title page of this document is necessary for suppliers and users to develop new designs, or modify existing designs or manufacturing processes in order to incorporate the new or revised requirements of this standard into their product development or production system.

This Subcommittee recommends that suppliers complete and implement design changes for new machines within 30 months of the approval of this standard.

For existing or modified machines, this Subcommittee recommends that users should confirm that the equipment / process has tolerable risk using generally recognized risk assessment methods within 30 months of the approval date of this standard. If the risk assessment shows that modification(s) is necessary, refer to the requirements of this standard to implement protective measures for appropriate risk reduction.

This standard was prepared by the B11.9 Subcommittee, processed and submitted for ANSI approval by the B11 Accredited Standards Committee on Safety Standards for Machine Tools. Committee approval of this standard does not necessarily imply that all committee members voted for its approval. At the time this standard was approved as an American National Standard, the ANSI B11 Accredited Standards Committee was composed of the following member organizations:
B11 Accredited Standards Committee

John W. Russell, PE, CSP Chairman
Gary D. Kopps, Vice-Chairman
David A. Felinski, Secretary

Organizations Represented

- Aerospace Industries Association of America
- Aluminum Extruders Council
- American Society of Safety Engineers
- Association For Manufacturing Technology
- Automotive Industry Action Group
- The Boeing Company
- Canadian Standards Association
- Deere & Co.
- General Motors Corporation
- Komatsu America Industries
- Metal Building Manufacturers Association
- Metal Powder Industries Federation
- National Institute for Occupational Safety & Health
- Occupational Safety & Health Administration
- Omron Scientific Technologies Incorporated
- Packaging Machinery Manufacturers Institute
- Pilz Automation Safety, LP
- Precision Metalforming Association
- Presence-sensing Device Manufacturers Association
- Property Casualty Insurers
- Robotic Industries Association
- Rockwell Automation
- Sheet Metal & Air Conditioning Contractors Nat’l. Assn.
- System Safety Society
- Toyota Motor Manufacturing North America
- International United Automotive Workers

Delegate

<table>
<thead>
<tr>
<th>Name of Representative</th>
<th>Alternate</th>
<th>Name of Representative</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willard Wood</td>
<td>Lance Chandler, PE</td>
<td>Melvin Mitchell</td>
<td>Scott Burket</td>
</tr>
<tr>
<td>Bruce Main, PE, CSP</td>
<td>George Karosas, PE, CSP</td>
<td>Russell Bensman</td>
<td>Alan Metelsky</td>
</tr>
<tr>
<td>Nancy Malo</td>
<td>David Lalain</td>
<td>Don Nelson</td>
<td>Joe Oberuc</td>
</tr>
<tr>
<td>Elizabeth Rankin, CRSP</td>
<td>Thomas Eastwood</td>
<td>Gary Kopps</td>
<td>Scott Fowler</td>
</tr>
<tr>
<td>Michael Douglas</td>
<td>James Landowski</td>
<td>George Schreck</td>
<td>Charles Praeger</td>
</tr>
<tr>
<td>Charles Stockinger</td>
<td>Charles Prager</td>
<td>Dennis Cloutier, CSP</td>
<td>Teresa Stillman</td>
</tr>
<tr>
<td>Richard Current, PE</td>
<td>James Harris, PhD, PE</td>
<td>Kenneth Stevanus</td>
<td>Robert Bell</td>
</tr>
<tr>
<td>Frank Webster</td>
<td>Christopher Soranno</td>
<td>Charles Hayes</td>
<td>Maria Ferrante</td>
</tr>
<tr>
<td>Michael Hayes</td>
<td>Michael Beerman</td>
<td>James Barrett, Jr. PhD</td>
<td>Lee Burk</td>
</tr>
<tr>
<td>Michael Beerman</td>
<td>Bill Gaskin / Christen Carmignano</td>
<td>James V. Kirtin</td>
<td>Michael Carlson</td>
</tr>
<tr>
<td>John Russell, PE, CSP</td>
<td>Roy Brown</td>
<td>Jeffrey Fryman</td>
<td>Todd Mills</td>
</tr>
<tr>
<td>Michael Miller</td>
<td>Michael McCullion</td>
<td>Michael Miller</td>
<td>Roy Brown</td>
</tr>
<tr>
<td>Michael McCullion</td>
<td>John Etherton, PhD, CSP</td>
<td>Barry Boggs</td>
<td>Rod Simmons, PhD</td>
</tr>
<tr>
<td>Barry Boggs</td>
<td>Tom Ford</td>
<td>Tom Ford</td>
<td>Todd Mills</td>
</tr>
</tbody>
</table>

At the time this standard was approved, the ANSI B11 ASC B11.9 Subcommittee had the following members who participated in the development of this revision:

- Theodore Braun, CSP, CPE, Liberty Mutual, Chairman
- William Pflager, Cinetic Landis, Vice-Chairman
- James Sprague, PhD, PE, Engineering Systems, Inc., Vice-Chairman
- Rob Beebe, Acme
- Tom Doyle, Industrial Safety Integration
- Ron Karbowski, ANSI B7.1 Chairman
- Bruce Main, PE, CSP, design safety engineering, inc.
- Jim Shilander, Parker Majestic
- David Smith, Metabo Corporation
- David Felinski, B11 Standards, Inc., Secretary
Explanation of the format, and ANSI B11 conventions

This ANSI B11.9 – 2010 (R2020) standard is divided into parts formerly referred to as sections or chapters and now referred to as clauses. Major divisions of clauses are referred to as subclauses and, when referenced by other text in the standard, are denoted by the subclause number (e.g., see 5.1).

The standard uses a two-column format to provide supporting information for requirements. The material in the left column is confined to “Standard Requirements” only, and is so captioned. The right column, captioned “Explanatory Information” contains information that the writing Subcommittee believed would help to clarify the requirements contained in the standard. This column is informative only, and should not be construed as being a part of the requirements of this American National Standard.

As in all American National Standards, the term “SHALL” denotes a requirement that is to be strictly followed in order to conform to this standard; no deviation is permitted. The term “SHOULD” denotes a recommendation, a practice or condition among several alternatives, or a preferred method or course of action.

Similarly, the term “CAN” denotes a possibility or capability, whether physical or causal, and the term “MAY” denotes a permissible course of action within the limits of the standard.

B11 conventions: Operating rules (safe practices) are not included in either column of this standard unless they are of such nature as to be vital safety requirements, equal in weight to other requirements, or guides to assist in conformance to the standard. The B11 series of standards do not use the term “and/or” but instead, the term “OR” is used as an inclusive disjunction, meaning one or the other or both. A distinction between the terms “individual” and “personnel” is drawn. Individual includes personnel (employees, subcontractors, consultants, or other contract workers under the indirect control of the supplier or user) but also encompasses persons who are not under the direct or indirect control of the supplier or user (e.g., visitors, vendors, etc.). Gauge refers to a measuring or testing instrument; gage refers to a limiting device (e.g., backgage).

Suggestions for improvement of this standard will be welcome. They should be sent to B11 Standards, Inc., POB 690905, Houston, TX 77269- Attention: B11 Secretariat.
Introduction
The primary purpose of every machine tool is to process parts. This is accomplished by the machine imparting process energy onto the workpiece. Inadvertent interference with, or accidental misdirection of the released energy during production, maintenance, commissioning and de-commissioning may result in injury.

The primary purpose of the ANSI B11 series of machine tool safety standards is to devise and propose ways to minimize risks of the potential hazards. This can be accomplished either by an appropriate machine design or by restricting personnel or other individuals’ access to hazard zones, and by devising work procedures to minimize personnel exposure to hazardous situations. This is the essence of the ANSI B11 series of safety standards.

The responsibility for the alleviation of these risks is divided between the equipment supplier, the user and the user’s operating personnel, as follows (numbers in parentheses refer to the clause numbers in these “base” B11 standards which address that responsibility).

The requirements of this ANSI standard are grouped according to those that apply to the supplier (i.e., manufacturer, rebuilder, modifier) and user. Some are shared between the supplier and user and are so indicated. Figure 1 provides an overview of this standard and in particular the responsibilities of and requirements for the supplier and user, including the user personnel. Numbers in parentheses denote the particular clause or subclause of the standard.

Notes for Figure 1:
1) Scope – Provides the boundaries or limits of the standard (i.e., what is/is not included).
2) Normative references – Other standards which in whole or in part provide additional requirements when referenced in the normative text (i.e., left-hand column of clauses 4 – 9) of this standard.
3) Definitions – Terms used in this standard, together with their definitions (terms used in the same context as are generally understood and commonly used in everyday English are not defined).
4) Responsibility – The general responsibilities of the supplier (builder), user, and the user personnel are listed in clause 4 together with which of the remaining clauses they have primary responsibility.
5) Hazard control (task/hazard identification & risk assessment/risk reduction) – Although clause 5 is intended to require a shared responsibility between supplier and user, the requirements of this clause may fall primarily on either entity (see B11.0 [B11.TR3] for further explanation of hazard/task identification and risk assessment/risk reduction).
6) Design and construction – It is assumed that the supplier will be responsible for the requirements of clause 6 with the understanding that the user may add to or modify these requirements through the purchase agreement.
7) Installation, testing and start-up – Although the requirements of clause 7 are predominantly the responsibility of the user, the supplier will normally provide assistance either directly (providing personnel) or indirectly (instruction materials).
8) Safeguarding – This is normally a shared responsibility but often, either the supplier or the user will provide and/or meet the requirements of clause 8.
9) Operation and maintenance – The user is normally responsible for the requirements of clause 9 with possible assistance from the supplier for training.
Figure 1 – Typical layout of B11 base standards showing the various responsibilities

The gray shading represents ANSI B11. A solid line between a block showing reference standard(s) and a block showing a normative clause denotes part of the requirements. A dashed line denotes an informative reference.
1 Scope
This standard applies to all stationary grinding machines, used in either industrial or commercial applications, that utilize an abrasive product to change the shape, size or surface finish of any material.

1.1 Included machines
This standard includes but is not limited to the following machines, regardless of their control method, that use an abrasive product to remove material:

E1 Stationary grinding machines are fixed in position during operation and capable of a combination of one or more types of operations. Abrasive products include coated abrasives and superabrasives, as well as abrasive products consisting of abrasive grains held together by organic or inorganic bonds.

E1.1 Control methods may include pneumatic, hydraulic, servo, NC, CNC, mechanical, manual, etc.).

Figures 1.1 through 1.16 are simplified schematics of different machine configurations and may not depict required guards (removed for clarity).

1.1.1 External cylindrical grinding machine
A machine that grinds the external surface of a rotating workpiece.

Figure 1.1.1 – External Cylindrical Grinding
Examples:
Center-type or cylindrical grinders
Gear grinders
Profile and cam grinders
Thread grinders

1.1.2 Centerless external cylindrical grinding Machine
A machine that grinds the external surface of a rotating workpiece. The workpiece is rotated and mechanically guided with reference to the grinding wheel by means of a control-wheel, and rests on a straight-edge placed between the two wheels.

Figure 1.1.2 – Centerless Grinding
1.1.2.1 Internal cylindrical grinding machine
(includes either horizontal or vertical spindle configurations)

A machine that grinds the internal surface of a rotating workpiece. The workpiece and the grinding wheel are mechanically guided.

1.1.3 Surface grinding machine – peripheral grinding, reciprocating table, (horizontal spindle)

A machine that grinds the plane surfaces of a workpiece whereby the workpiece is secured to a reciprocating table. The workpiece and the grinding wheel are mechanically guided.

1.1.4 Surface grinding machine – peripheral grinding, rotary table (horizontal spindle; table has a vertical axis of rotation)

A machine that grinds the plane surfaces of a workpiece whereby the workpiece is secured to a rotary table. The workpiece and the grinding wheel are mechanically guided.
1.1.5 Surface grinding machine – face grinding, reciprocating table (vertical spindle)

A machine that grinds the plane surfaces of a workpiece whereby the workpiece is secured to a reciprocating table. The workpiece and the grinding wheel are mechanically guided.

1.1.6 Surface grinding machine – face grinding, rotary table (vertical spindle; table has a vertical axis of rotation)

A machine that grinds the plane surfaces of a workpiece whereby the workpiece is secured to a rotary table. The workpiece and the grinding wheel are mechanically guided.

1.1.7 Surface grinding – face grinding, Double disc surface grinding machine (includes either horizontal or vertical spindle configurations)

A machine that grinds the workpiece by passing it between two disc or cylinder wheels or segments. The workpiece and the grinding wheels are mechanically guided.

1.1.8 Tool & cutter grinding machine – peripheral and face grinding (includes multiple horizontal spindle configurations)

A machine that grinds or regrinds cutting faces and edges of tools (workpiece). The workpiece and the grinding wheels are mechanically guided.
1.1.9 Cutting-off machine (guillotine type)

A machine that grinds the workpiece for slotting or cutting-off. The workpiece is firmly fixed and the cutting-off wheel is mechanically guided.

1.1.10 Cutting-off machine (chop-saw type)

A machine that uses a hand-guided cutting-off wheel on a firmly clamped workpiece.

1.1.11 Cutting-off machine (workpiece translation type)

A machine that uses a hand or mechanically-guided vertically adjustable cutting-off wheel on a firmly clamped workpiece.

1.1.12 Bench, pedestal or floorstand grinding machine – peripheral grinding

A machine that grinds the surface of a workpiece using the wheel periphery. Workpiece is guided by hand.
1.1.13 Pedestal grinding machine – face grinding (horizontal spindle)

A machine that grinds the surface of a workpiece using the wheel face. The workpiece is guided by hand.

1.1.14 Swing frame grinding machine – peripheral grinding/cutting-off

A suspended machine that utilizes handlebars to guide the machine to grind or cut the workpiece using the wheel periphery. The workpiece is firmly clamped or stabilized by its own weight. The grinding machine is guided by hand.

1.1.15 Automatic billet grinding machine – surface grinding (high pressure)

A machine that uses high pressure grinding where the workpiece is secured to a table. The workpiece and the grinding wheel are mechanically guided.

NOTE: A swing frame grinding machine is typically used for snagging operations, often for rapid stock removal in foundries.
STANDARD REQUIREMENTS

1.2 Excluded machines
This standard does not apply to portable hand-held grinding machines, machines using loose abrasives, machines used in wood-working applications, or machines used for concrete cutting in road construction.

Also, this standard does not apply to honing machines, lapping machines, polishing machines or belt grinding machines.

E1.2

Machines that use free abrasives or reciprocating motion and or very low speed are excluded from this standard because they typically use lighter force than with grinding machines, and the mechanism at the point of operation significantly differs from that of abrasive products used on grinding machines.

2 References
This standard is to be used in conjunction with the following American National Standards:

2.1 Normative references
The following standards contain provisions that, through reference in this document, constitute provisions of this American National Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this American National Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

ANSI B7.1 – 2000 Safety Requirements for Use, Care and Protection of Abrasive Wheels (and corrigendum)

ANSI B11.0 – 2010, Safety of Machinery; General Requirements and Risk Assessment/Risk Reduction

ANSI / ASSE Z244.1 – 2003 (R2008), Control of hazardous energy – Lockout/tagout and alternative methods

ANSI / ASME Boiler and Pressure Vessel Code, 2009. (Division 1, Section VIII)

NFPA 70E – 2009, Electrical Safety Requirements for Employee Workplaces.

Since the grinding machine and abrasive product are the fundamental components of the grinding system, it is particularly important that users of ANSI B11.9 concurrently reference ANSI B7.1.